
Neville Longbottom at Touché 2023: Image Retrieval
for Arguments using ChatGPT, CLIP and IBM Debater
Notebook for the Touché Lab on Argument and Causal Retrieval at CLEF 2023

Daria Elagina1, Bernd-Albrecht Heizmann1, Max Koch1, Gustav Lahmann1 and
Christian Ortlepp1

1Friedrich-Schiller University Jena, 07743, Jena

Abstract
Argumentative search engines could benefit from images visualizing each side of the presented pro and
con arguments. The objective of this task is to retrieve 10 images supporting and 10 images opposing a
controversial topic from a given dataset of images. We describe a way to prompt ChatGPT for arguments
backing each stance, which will then be used to find matching images. Our first approach uses BM25 on
the website text to represent an image, while our second method uses OpenAI’s CLIP to analyze the
images themselves and match them with arguments. Both retrieval methods can then be refined using
IBM Debater’s stance detection capabilities to further increase stance awareness.

Keywords
CLIP, ChatGPT, IBM Debater, boilerpy

1. Introduction

In order to find images conveying either a supporting (PRO) or opposing (CON) stance towards
a controversial topic, we considered it being helpful to know what talking points each position
commonly uses. Since this requires some outside knowledge, we wanted to make use of recent
advances in generative large language models by using the knowledge embedded inside them,
originating from their training data. As ChatGPT was trained on large portions of the Internet
until 2021 and none of the 50 topics presented in this task are about a phenomenon only
emerging after that time, we used it to generate a list of arguments supporting or opposing
each topic.

Using these two sets of arguments, we built one pipeline for retrieving PRO images, and
one for retrieving CON images for a topic. Our first approach uses the concatenation of all
arguments of a stance for a topic to search in a BM25 index of the page contents in the dataset.
The resulting images are ranked based on the BM25 score of the document they are found within.
Our second approach uses OpenAI’s pre-trained CLIP model[1] to retrieve images based on their
actual content. The model was trained to map image data as well as the corresponding image
description (short phrases of words) into the same 300-dimensional vector space. Using the

CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
$ daria.elagina@uni-jena.de (D. Elagina); bernd-albrecht.heizmann@uni-jena.de (B. Heizmann);
m.koch@uni-jena.de (M. Koch); gustav.lahmann@uni-jena.de (G. Lahmann); christian.ortlepp@uni-jena.de
(C. Ortlepp)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:daria.elagina@uni-jena.de
mailto:bernd-albrecht.heizmann@uni-jena.de
mailto:m.koch@uni-jena.de
mailto:gustav.lahmann@uni-jena.de
mailto:christian.ortlepp@uni-jena.de
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

separate arguments as the description phrase we get a point in this vector space. By returning
the images closest to this point we retrieve images whose content matches the argument. After
doing this for every argument separately, the distance of each image to their respective argument
point is used as the score to rank by.

While the retrieved images are already stance aware due to the stance specific arguments, we
tried to further eliminate neutral, on-topic images by using IBM Debater to rerank the results of
the BM25 or CLIP retrieval stage. Five surrounding sentences for each image are passed to the
API alongside the topic, returning a score indicating whether they both convey the same stance.

2. Query expansion

To find arguments of a particular stance towards a given topic, we prompted ChatGPT using
the following template, in which $STANCE is replaced by “for” for PRO and “against” for CON.
The original query is passed as $TOPIC.

Name a list of arguments $STANCE "$TOPIC"

The answers were always correctly formatted markdown lists (either enumerated or with
bullet points), which could be easily parsed into a list of separate arguments. Since our project
began with the start of the public beta of ChatGPT, no official API was available yet, so the
answers were fetched from the browser interface of the ChatGPT version deployed at that time
using an unofficial puppeteer script. For reproducibility, all answers for both stances and topics
51 to 100 are hard coded in a JSON file published with our source code. 1

3. Retrieval

After expanding the topic for a given stance into a list of arguments, we try to find corresponding
images from the dataset in two different ways. The first one uses the surrounding text of the
image, whereas the second approach exclusively works on the image data itself.
1https://github.com/corite/ir-code

https://github.com/corite/ir-code

Name a list of arguments for "Should the US Electoral college be abolished?"

• The Electoral College is undemocratic and gives disproportionate weight to certain
states.

• ...

For each of the arguments, what could be an image description of an image illustrating the issue?

• An image of a map of the United States with certain states highlighted to show how the
Electoral College disproportionately affects the outcome of elections in those states.

• ...

Figure 1: Query expansion with PRO arguments for topic 98: ChatGPT conveniently answers using
markdown formatted lists. The generated image description wasn’t used in the end, as the argument
phrases as input for both BM25 and CLIP yielded better results on our testing data.

3.1. BM25

In this approach, we assume the image’s stance towards a topic is reflected by the text surround-
ing it. Following the idea that the text in closer spatial proximity to the image in the document
is more likely to be connected to the image’s content, we implemented an algorithm to extract
paragraphs from the document starting at the image and then alternating between paragraphs
directly above and below the image. These paragraphs will be concatenated and used as the
document representation in the BM25 index.

To find nodes containing meaningful text in the HTML document, we used the
DefaultExtractor2 of the boilerpy3 library, because the default ArticleExtractor left
out too many relevant parts of the document. The extractor employs some heuristics and marks
nodes in the HTML document, which are likely to contain meaningful text, using a special tag.
We then used the xPaths of the images provided in the image dataset to find image occurrences
in the tagged HTML document. Starting with the alt text of the image, if available, text from
below and above the image is extracted alternatingly.

Using the first 4096 characters of the concatenated paragraphs obtained this way, a BM25
index was built for the whole dataset using the default implementation of pyterrier. The
document IDs are the ID of the image, whose containing HTML page was used for content
extraction. Given a list of arguments for a certain stance, we concatenate all the arguments and
use the resulting string as the input query for the BM25 search, whose results will be further
processed by a reranker as described later.

3.2. CLIP

The CLIP [1] neural network was designed and trained by OpenAI to map images as well as
short phrases of text describing images into the same 512-dimensional vector space. While
projects like Stable Diffusion use this model to obtain vector representations for prompts, we

2https://github.com/jmriebold/BoilerPy3/blob/master/boilerpy3/extractors.py

https://github.com/jmriebold/BoilerPy3/blob/master/boilerpy3/extractors.py

Figure 2: Nodes marked by boilerpy3’s Default Extractor are highlighted in pink. The numbers
indicate the order in which the content of the nodes are concatenated to form the document representa-
tion. Missing numbers correspond to nodes not found in the DOM when creating this visualization.

wanted to find images representing a certain topic, or even argument.
For every image in the dataset, we used the pre-trained openai/clip-vit-base-patch323

model to infer the corresponding vector representation, which was then normalized to length
one and added to a BallTree index from sklearn. This enables us to use a k-nearest-neighbor
search, which results in the same ranking as when sorting by cosine similarity.

Based on a list of separate arguments, we looked up the 100 nearest images to the vector
representing the argument text for each argument. The retrieval result is sorted by the distance
to the respective argument, so images obtained for different argument phrases will share the
top ranks. If an image appears in the 100 nearest neighbors of multiple arguments, the lowest
of the distances is used as the score.

3https://huggingface.co/openai/clip-vit-base-patch32

https://huggingface.co/openai/clip-vit-base-patch32

4. Reranking

While the retrieval operations discussed before can be efficiently applied on the whole dataset
and result in on-topic images most of the time, we attempted to further refine the results towards
a certain stance. For this, we used the top 500 images obtained using either CLIP or BM25 and
passed them to our reranking stage.

The parameters used in both rerankers were chosen using a grid search on the 2022 dataset
on topics 12, 13, 20, 46 and 49, for which we manually judged the union of the top 1000 CLIP
and BM25 results using the original topic as the input.

4.1. Diff

Often on-topic images appeared in the top results of both stances. Therefore, in this reranking
we subtracted 0.5 times the BM25 score of the same document for the opposite stance from the
actual BM25 score, in an attempt to lower the score of neutral but on-topic images.

4.2. Debater

We used IBM’s Project Debater Early Access API [2] to calculate a new score for each image
based on the first 5 sentences of our document representation, i.e. the sentences closest to the
image on the page, including the image’s alt text.

For this, we used the "pro-con" endpoint, which given two sentences returns the stance of the
first sentence relative to the second sentence as a number between -1 (CON) and 1 (PRO). We
calculated this score for each sentence paired with the original topic text and averaged them to
get the new image score. When ranking for CON instead of PRO, the score was simply inverted.

5. Evaluation

We submitted a single Docker image to TIRA [3], which can run any of the pipeline combinations
when passing the corresponding name as an environment variable. The arguments generated
by ChatGPT as well as the scores from the IBM Debater api were fetched in advance and are
mounted into the container to allow for reproducible runs without Internet access.

Finding on-stance images is the hardest part of this task. When looking at the on stance
score, the raw pipelines without the reranking stage outperforming both the diff and debater
rerankers for BM25 as well as CLIP retrieval, show they are less reliable than our retrieval stage
on its own.

run on topic argumentative on stance
clip_chatgpt_args.raw 0.785 0.338 0.222
clip_chatgpt_args.debater 0.684 0.341 0.216
bm25_chatgpt_args.raw 0.572 0.274 0.166
bm25_chatgpt_args.diff 0.442 0.240 0.150
bm25_chatgpt_args.debater 0.416 0.201 0.128

References

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, I. Sutskever, Learning transferable visual models from
natural language supervision, 2021. arXiv:2103.00020.

[2] R. Bar-Haim, Y. Kantor, E. Venezian, Y. Katz, N. Slonim, Project debater apis: Decomposing
the ai grand challenge, 2021. arXiv:2110.01029.

[3] M. Fröbe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein,
M. Potthast, Continuous Integration for Reproducible Shared Tasks with TIRA.io, in:
J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz,
A. Caputo (Eds.), Advances in Information Retrieval. 45th European Conference on IR
Research (ECIR 2023), Lecture Notes in Computer Science, Springer, Berlin Heidelberg New
York, 2023, pp. 236–241. URL: https://doi.org/10.1007/978-3-031-28241-6_20. doi:10.1007/
978-3-031-28241-6_20.

http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2110.01029
https://doi.org/10.1007/978-3-031-28241-6_20
http://dx.doi.org/10.1007/978-3-031-28241-6_20
http://dx.doi.org/10.1007/978-3-031-28241-6_20

	1 Introduction
	2 Query expansion
	3 Retrieval
	3.1 BM25
	3.2 CLIP

	4 Reranking
	4.1 Diff
	4.2 Debater

	5 Evaluation

