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Abstract
In this paper, we present our submission to a shared task on argument retrieval for comparative ques-
tions at CLEF 2021. For the given comparative topics, we retrieved relevant documents from the ClueWeb12
corpus using BM25-based search engine ChatNoir and rerank them with our approach. Our approach
combines multiple natural language processing techniques such as part-of-speech (POS), word embed-
dings, language models such as BERT, argument mining, and other machine learning methods. Using
the TARGER Tool, BERT or PageRank we generated scores which are then used for the re-ranking. A
Support Vector Machine is used to learn weights for the final ranking of documents on basis of those
scores. The presented results on the given topics from the shared task last year evaluated by nDCG@5
measures showed, that one configuration of our approach can improve the nDCG@5 by approx 0.07
if we only consider the evaluated documents. Furthermore, one of our approaches reached the fourth
place in the Argument Retrieval for Comparative Questions task.
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1. Introduction

Every person has to make decisions several times a day. Some of these decisions hardly have
any influence on the person, some decisions can have a decisive impact on the person’s life.
An example of such an important decision might be at which university one should study
or for which job one should apply. There is often a point where you have to weigh several
options against each other and are forced to choose one of them. So it could be that you have
to choose one of the universities. For this decision, you need the information that supports
each side. Here it would be useful if there was some kind of search engine that would provide
the pros and cons of a given comparative question. This is exactly the kind of problem that
Touché Task 2 is concerned with. The goal here is to generate a ranking for documents from the
ClueWeb12 corpus using search engine ChatNoir so that documents that provide great value
for a comparative question are ranked as high as possible [1]. We present in the following our
approach with which we aim at solving this task and providing people with the best possible
arguments so that they can weigh up for themselves and finally make an informed decision.
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As an objective, we can formulate that we aim to improve with respect to last year’s baseline
and ideally also reach most effective approach of the last year. It should be mentioned here that
there was only one submission last year that exceeded the baseline and that had an improvement
for the nDCG@5 of 0.012 [2].

The structure of the paper is as follows. First, we review some related approaches that describe
the basis of our software in more detail. This part is followed by our query expansion steps that
extend the original query to retrieve additional documents that also match the searched topic.
After that, we deal with the scores used for improving the ranking. The scores are followed
by an overview of our entire pipeline along with the options provided by the architecture we
have chosen. The next topic will be the results we got from applying our pipeline to last year’s
dataset. The paper is then closed by the conclusion, which reviews the most important parts of
the pipeline and suggests some possible improvements.

2. Related Work

We have used some areas in our approaches such as argument mining and synonyms extraction.

2.1. Argument Mining

Argument mining is the process of automatically extracting arguments from unstructured texts.
This process is becoming increasingly important with regard to the automatic processing of
texts from the web [3]. For a comparative question, a search engine can use argument mining
to find relevant documents on the web that contain arguments regarding a concept. There
are several developments for argument mining by applying natural language processing (NLP)
methods. We chose TARGER because it allows us to use the software through an API and was
designed explicitly for web documents in mind. TARGER is an open-source neural argument
mining tool for tagging argument units, like premises and claims [4].

2.2. Synonyms extraction

Synonyms extraction is a research problem, which is helpful to text mining and information
retrieval [5]. For example, an automatic query expansion using synonyms is capable of improving
the retrieval effectiveness [6]. The WordNet database can be used to obtain synonyms of an
English word [7]. This method can lead to a problem of semantic gap [8], for example, i go to the
bank and i sit on the bank. To find the right synonyms for this word bank, we need to understand
the context of these sentences. The use of this dictionary is also sometimes expensive because of
the manual building and maintaining of database [9]. An improved approach is to incorporate
word embeddings to deal with a semantic problem [10]. There are several methods to calculate
the similarity between words using word embeddings, such as Manhattan distance [11]. In our
approach, we use cosine similarity for synonyms extraction.



3. Query expansion

User queries sometimes do not accurately reflect the user’s information needs. For example, the
queries are too short or the user uses other semantically similar words, that are not available
in the retrieval system. To improve the retrieval process, the users’ queries can be expanded
through different query expansion methods [12]. In our approach, we generated several new
queries based on the given query using natural language processing, part-of-speech method,
word embeddings and combinations of them. The following explains how the query expansion
was implemented.

3.1. Expansion methods

In our first method Preprocessing, a new query is generated by lemmatization of a single word
of the original query, for example, Which four wheel truck is better: Ford or Toyota? to Which
four wheel truck be good: Ford or Toyota?. In this method, we are not interested in a concrete
comparison between two objects Ford and Toyota, but it is expected that this transformation to
lemmas will return more results about these objects from the retrieval system. To note here is
that preprocessing belongs to the query expansion step but is separate from other expansion
methods in our implementation.

To focus on the comparison part of a query sent by the user, we assume in the second
expansion method that the search engine should identify the terms from the query that stay on a
comparative relationship, for example: four wheel truck, better, Ford and Toyota are comparative
terms. In the retrieval process, the search engine should find documents, which contain these
comparative terms. In this technique, the part-of-speech (POS) tagger from the spaCy language
model [13] is used to select these terms and generate a new query from them (see 1). We assume
that the comparative terms of a query can have the following POS tags: number, verbs, adjectives,
adverbs, nouns, proper nouns. Numbers, adjectives, nouns, and proper nouns can represent the
objects to be compared in the query. When comparing two actions, such as should I buy or rent?,
verbs and adverbs can play the role of the comparative terms. The newly created query in this
method with POS contains only these comparative terms and other not comparative terms will
be removed.

Figure 1: Identification of Part-Of-Speech-Tags visualized by https://spacy.io/usage/visualizers



To deal with the problem of semantically similar words, for example, the user uses notebook
in his query and a factually relevant text contains only the word laptop, three methods are
implemented using WordNet [7], word embeddings [10], and word sense embeddings [14]. The
WordNet method expands the original query by adding synonyms of comparative terms, which
have NOUN-tag, to the end of the original query. The two other embedding based methods
replace the comparative terms by found synonyms to create a new query. The comparative
terms used here have already been identified in the second method above.

In the first variant, we use WordNet dictionary, a lexical database for the English language to
find the synonyms. The more specific a query is, the higher the probability that no document
contains all words of the query. It can lead to a problem that no results from ChatNoir will be
returned. For this reason, only the first five synonyms returned by WordNet for each word of
NOUN-comparative terms are used.

For specific names such as Google, Yahoo, and Canon in a query, no synonyms can be found
by the WordNet dictionary, however similar terms such as search engine, camera or other similar
organizations such as Bing, Nikon are sometimes helpful in the retrieval process. For example,
the user does not want to compare the financial factors of the organizations with the query
which is better, Google or Yahoo?, but is interested in the functionality of the two search engines.
The similar word search engine can help to describe the information needs of the user clearer in
this example. Moreover, specific names of organizations may be changed after time and only
a few documents with the old names are found. In this case, the documents with the new or
similar names may be relevant to the user’s query. Therefore, semantic similar words by using
wordembeddings are searched in our approach and used for the two next query expansion
embedding methods. For each comparative term, the top two similar words will be selected by
the two highest cosine similarities.

We use models of word2vec embeddings and sense2vec from the spaCy library to generate
word vectors for the comparative terms [13][15]. The word2vec model for the English language
of spaCy was trained on the English dataset of OntoNote 5.0, which contains various genres
of text, like news and web data [16]. The sense2vec model was trained on the 2015 portion of
the Reddit comments corpus [17]. Both pre-trained models are suitable for our task with web
documents. In the word2vec method for each word from the comparative terms, the top two
similar words are determined using cosine similarity. If a candidate word is not present in the
vocabulary of word2vec, no similar words are extracted. The sense2vec model is an extension of
word2vec, where separate embeddings are learned for each sense of word, based on its POS tag.
For example: in the query Which is better, Canon or Nikon?, Canon is recognized as a Proper
Noun by POS Tagger or as a PRODUCT by Named Entity Recognition. In this case, similar
words should be searched with the consideration of the entity PRODUCT. To make it possible,
we use the sense2vec model to find similar words also by cosine similarity.

After the top two similar words have been found for each comparative term using word2vec
and sense2vec, we replace these terms with their associated similar words. This replacement
process can generate several new queries, for example which is better, laptop or desktop? will
be extended to which is better, notebook or desktop? and which is better laptop or PC?, because
notebook is the similar word of laptop and PC is the similar word of desktop. Suppose we have
𝑛 comparative terms in our query. If two similar words are found for each term, there are 2 * 𝑛
new queries created by word2vec and also 2 * 𝑛 by sense2vec.



If all above expansion methods are used, we have then a maximum of 3 + 2 * (2𝑛) new
queries from the given original topic. Since we need a final ranking without duplicates in the
end search results, all retrieval documents from this part will be merged in the next step.

3.2. Merging

After query expansion, the original query and all other expanded queries are sent separately to
search engine ChatNoir [1]. We keep all punctuation throughout the queries. For each query,
100 documents are by default retrieved. This means that for each original topic, a maximum
of 100 * (3 + 4 * 𝑛) documents are called. Since the submitted queries are similar, the set
of retrieved documents usually contains multiple duplicates but with different scores. This
problem motivates us to filter the search results so that duplicate documents are not shown to
the user.

In our approach, the identical documents returned for each query have different relevance
scores and at the same time have different importance concerning the user’s expectation. We
assume that the documents for the original queries are more likely to be relevant to the user
than the documents from the extended queries, i.e. the documents retrieved by the original
queries meet the user’s information need better. In advance, each query expansion method
is assigned a different importance weight. In our default approach, we use these values for
weights: 𝑤original = 2, 𝑤pos = 1.5. Other expanded queries will be assigned with the same
importance weight value: 𝑤𝑤𝑜𝑟𝑑𝑛𝑒𝑡 = 𝑤𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 = 𝑤𝑠𝑒𝑛𝑠𝑒2𝑣𝑒𝑐 = 1.

Given 𝑇 is tag names of all queries: 𝑇 = {original, pos, wordnet, word2vec, sense2vec}. If a
document 𝑑 occurs with different relevance scores 𝑟𝑑𝑡 in the different expansion methods 𝑡 ∈ 𝑇 ,
these relevance scores are recalculated by multiplication with predefined importance weights.
Using these weighted scores, a merge process is performed. We tested two merge functions. In
the first variant, the maximum weighted score is selected from all weighted scores and assigned
to the document: 𝑟𝑑 = max(𝑟𝑑𝑡 * 𝑤𝑡). We assume here that the document is rated as relevant
to the user query if it is highly ranked in at least one expansion method. In the second variant,
the average of all weighted scores is assigned to the document: 𝑟𝑑 = average(𝑟𝑑𝑡 * 𝑤𝑡). In this
case, the document is relevant if it has a high relevance score in all query expansion methods.

4. Scores

4.1. Argumentative scores

The motivation for our argumentative score approach is based on the fact that an answer
suitable for a comparative question should be supported by multiple statements and premises.
To implement it, the argument mining system TARGER with the model classifyWD_dep was
used, because documents from the ClueWeb12 dataset were collected from English websites
and the model classifyWD_dep was trained on the similar dataset web discourse [4] [18]. The
TARGER system identifies argumentative units, premises and claims, on the token level in the
input document. It returns for each token a label and related probability. An argumentative
score is computed for the document by using the average of valid returned probabilities. In our



approach, a returned probability is valid, if its token is at the beginning or inside of premises or
claims in the document. The outside labels from TARGER are not relevant.

If ℒ is the set of all labels of valid argumentative units for premise and statements. For each
word 𝑤 from the document 𝑑, TARGER outputs a tuple (𝑙𝑤, 𝑝𝑤) of the most likely predicted
argumentative unit label and corresponding prediction probability. We use only (𝑙𝑤, 𝑝𝑤) if 𝑙𝑤 ∈
ℒ is a valid argumentative unit. 𝑑ℒ consists of only words 𝑤 with 𝑙𝑤 ∈ ℒ. The argumentative
score for the document 𝑑 is then computed as follows:

𝑝 =
1

|𝑑ℒ|
∑︁

𝑤∈𝑑ℒ,𝑙𝑤∈ℒ
𝑝𝑤

arg_score(𝑑) =

{︃
𝑝 𝑝 ≥ 𝜃

0 otherwise

In our approach, the threshold 𝜃 defines the minimum argumentativeness a document needs
to have. A document is considered an argumentative document if its argumentative score is
greater than 0.55. If the threshold is higher than 0.55, we hardly get argumentative documents.
Our experiments with topics from the shared task last year have also shown, that the threshold
value 0.55 had provided the best result.

4.2. Trustworthiness

Another important characteristic of a good argument is its truthfulness, or if this information
cannot be derived directly, at least the reliability of the source. We concluded that another
score that encodes exactly this information may be beneficial for our problem. Unfortunately,
determining the trustworthiness of a website is not a simple task and may not even be clearly
definable. Utilizing PageRank we try to extend our pipeline with a trust component. This should
allow us to weigh the different answers against each other and thus create another score on
which we can rely [19].

In a rough summary, Pagerank is a way to define the relevance of a website without ana-
lytically processing its content. PageRank accomplishes this by taking advantage of the link
structure of the Web. The assumption here is that there links to reliable websites are more
frequent than links to unreliable ones and that reliable websites in turn mainly link to reliable
websites. Thus, the link structure of the web is interpreted as a self-assessment of trustworthi-
ness. PageRank now only reflects this structure in a single value per website. So this score can
be seen as some kind of peer review [20].

Here we use PageRank to obtain a pseudo trustworthiness. For this, we will use a reim-
plementation of PageRank, OpenPageRank [21]. In the following, we will briefly look at the
correlation between PageRank and the ratings we know from last year’s evaluation to make a
statement about the information content of this score alone [2].

If we now look at Figure 2, we can see that there is no clear relation between PageRank and
the ratings of the documents. This assumption is supported by a small Spearman correlation of
about -0.003. Since one would expect strictly monotonic relationships if PageRank could make
a statement about the Qrel score, these values speak against this assumption. Therefore, it can
be assumed that the PageRank score will not provide much additional value.



0.0

2.5

5.0

7.5

0 1 2
Qrel Score

P
ag

eR
an

k

Figure 2: The PageRank obtained depending on the relevance score of the documents. Zero means
not relevant, one denotes relevant and two indicates very relevant. The PageRank values range from 0
to 10 with 0 being the lowest and 10 being the best. Each dot represents a document.

4.3. Relevance Prediction

Due to the availability of assessed documents based on their relevance for a specific topic
from last year, we decided to try a supervised learning approach. Especially since the results
from last year utilized BERT to embed documents and topics and calculated a similarity score
based on those embeddings, worked comparable well [2]. We decided to build on this idea
and use BERT to predict whether a particular document is relevant or not. BERT stands for
Bidirectional Encoder Representations and is an open-source machine learning framework for
natural language processing [22]. So the problem defined here was interpreted as a two-sentence
classification problem, as it is called in the SimpleTransformers library [23]. This means that
we use two sentences as input and receive a class as the result. The two input sentences consist
on the one hand of the query and on the other hand of the complete document for which we
want to determine the relevance. It should be mentioned that the implementation used here
results in the structure of the input for BERT being such that the query and the document
are separated by the separator token. Thus the input consists of the classifier token followed
by our query which is in turn followed by the first separator token then the corresponding
document is added and finally the second separator token is appended. Furthermore, it should
be mentioned here that we predict the importance labels with the help of BERT. Additionally, it
is worth mentioning that we predict the importance labels with the help of BERT. So we obtain
0, 1, or 2, whereby these values represent the classes irrelevant, relevant, and very relevant.

Our goal was to train BERT so that we obtain the appropriate relevance scores as a result. As
base model, we use bert-base-cased. SimpleTransformers uses Hugging Face in the background
to provide the corresponding pre-trained models [24]. It would be therefore straightforward to
use other models instead of BERT or bert-base-cased. The decision to use specifically this model
is mainly due to the hardware we have available. The chosen parameters for the Fine-tuning
process were determined based on the cross-entropy, and we used the parameters that provided
the best cross-entropy.



The most important parameters are the learning rate, which is 1 * 𝑒−8. The learning rate that
is applied only to the classification layer which is 1 * 𝑒−5, the number of epochs that we set to
10, and the batch size which is 4. From the two different learning rates you might already see
that we make almost no changes to the main model of BERT. This turned out to produce a better
cross-entropy than training the whole model with a higher learning rate. We decided not to use
the option of stopping the training earlier since this led to a deterioration of the cross-entropy
in our experiments. Because the classes differ significantly in the number of associated data, we
weighted each class with 1− 𝑤𝑐, where 𝑤𝑐 is the relative frequency of class 𝑐. For the training,
we used the evaluated documents of last year’s task [2].

4.4. Combining the individual scores

To combine the scores, we use a support vector machine. This allows us to determine a weighting
for the individual scores based on the documents already evaluated last year [2]. As input for
the SVM, we use the previously calculated scores and the score provided by ChatNoir with the
request. If necessary, individual scores can be included or left out from the calculation of the
final score. However, this does not apply to the score provided by ChatNoir, which is always
used.

Since this is not just a classification problem, but the task is to compute a score, we use
support vector regression. This means we get real numbers from our SVM and not labels
as it was the case for example with BERT in chapter 4.3. For the implementation, we utilize
Scikit-learn and keep the default settings [25]. Important is that we normalize the scores used
as inputs by using the z-score standardization. Furthermore, these normalized values are then
mapped by a sigmoid function onto the value range between zero and one. The standardization
described and used in the implementation is defined in more detail in equation (1).

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
𝑖𝑛𝑝𝑢𝑡− 𝜇𝑖

𝑠𝑑𝑖
) (1)

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) : =

{︃
1

1+𝑒−𝑥 if 𝑥 ≥ 0
𝑒𝑥

1+𝑒𝑥 else
(2)

where: 𝑖𝑛𝑝𝑢𝑡 = a value belonging to one of the scores that is to be normalized
𝜇𝑖 = the previously calculated mean for the score
𝑠𝑑 = the previously calculated standard deviation for the score

This is firstly to take advantage of the generally expected improved performance of an SVM
on standardized data [26]. Second, the sigmoid function in particular is intended to catch outliers
that could potentially overshadow the other scores, thus ensuring that all scores can exert their
attributed influence on the final result. The result we receive from the SVM is used as our final
score. If individual values are not available, these are set to the mean and then processed as
usual.



Topics

Query
Expansion Chat NoirPre processing

BERT

Trusworthiness

Argumentative

SVM

Results

Merging 
(dealing with
duplicates)

Figure 3: Schematic illustration of the complete pipeline. The dashed lines show possible alternative
routes or paths that can be disabled. Therefore, individual scores which are given to the SVM can be
activated or deactivated. The only score that is always used is the one from ChatNoir. So the SVM can
utilize at least one and at most four scores.

5. Complete layout of our approach

The pipeline presented here consists of parts that have been already discussed in sections 3
and 4. Those parts can be individually activated. On the one hand, this allows us to examine
the different segments separately in the context of the complete pipeline, but it also makes it
possible to add further scores to this basis with minimal effort because the individual parts
function independently of each other.

Figure 3 provides a rough overview of how our pipeline is structured. There we can see
that we start with the topics which are supplied as a list of queries. Those are manipulated
accordingly in the preprocessing and in the query expansion step. With ChatNoir we get
potential documents for the queries. At the same time, ChatNoir provides us with a first score.
This score is the only non-optional in the pipeline and is therefore always used. ChatNoir is
followed by the already described Merging step. After this, the selected additional scores are
calculated and the intermediate results are mapped to a final score using the support vector
machine. This is then stored in the standard Trec file format.

Important to note here is how we take care of ties. If we have a tie between multiple
documents, all documents except the first one will have 𝜖100 subtracted from their final score.
𝜖100 is defined as 100* 𝜖, where 𝜖 is the smallest possible float. We cannot use 𝜖 directly, because
we would introduce rounding errors that would cause ties to persist.

6. Results

We use the nDCG@5 to evaluate our pipeline in its entirety. The nDCG is here calculated with
the help of trec_eval using the measurement ndcg_cut [27]. Furthermore, the normal nDCG in
the following refers to the one that considers all documents and the judged one will refer to



Table 1
The nDCG@5 values for some selected configurations of our pipeline. The nDCG@5 values shown
here are first shown for all components alone, these values are each separated by lines from the next
category in which the number of active components is increased by one. The selection as to which
combination are shown here was made on the basis of observations made during the development.
The ’nDCG@5’ value describes the standard variant of the nDCG@5. The ’nDCG@5 (J)’ value, on the
other hand, only takes evaluated documents into account. The best nDCG value is marked in both
cases. The combinations submitted for evaluation are marked accordingly.

Prepro. Queryex. Argumen. Trust. BERT nDCG@5 nDCG@5 (J) Submitted

0.5187 0.5801
× 0.5084 0.5842

× 0.4909 0.5870
× 0.4655 0.6270

× 0.4996 0.5924
× 0.5122 0.5791

× × 0.4879 0.5870 ×
× × 0.4595 0.6516 ×

× × × 0.4169 0.6221 ×
× × × 0.5040 0.5819 ×
× × × × 0.4164 0.6462 ×

the version that only considers evaluated documents. This corresponds to the ’-J’ flag when
using trec_eval. The decision to consider the normal nDCG as well as the judged one was made
since it can happen that we rightly rank documents higher than the approaches of the last year,
and thus we get a worse nDCG, although the order is better. The judged nDCG provides us
with an impression of the extent to which the internal order among the evaluated documents
has improved or worsened. Ideally, we could do without this approximation, but potential
improvements might otherwise go unnoticed. In the first part, we will look at adding individual
scores which then results in us utilizing a total of two scores. As a baseline, we use the two
nDCG@5 values that ChatNoir achieves. These values can be found in the first row of the table
1. We will use these two values to determine the extent to which the ranking has improved or
worsened.

The first thing to note here is that we always have a deterioration in the normal nDCG@5
compared to the baseline. This can be extended to all combinations of scores that we have
examined in more detail and can therefore be seen in table 1. On the other hand, especially for
the judged nDCG@5 adding only one score, it can be stated that we can observe an improvement
for all combinations except for BERT. This noticeable difference will be further examined in one
of the following passages. Here, the small change due to preprocessing or query expansion is to
be expected, since by weighting the different origins of queries, the original ones are weighted
with a factor of two and all others with a factor of 1.5 or 1. Due to this weighting, it is relatively
unlikely that further documents slip upwards and the order in comparison to the baseline should
remain mostly the same. Only strong outliers are likely to change the order, and in this case,
ChatNoir itself would have classified them as a good fit.

The argumentative score worsens the normal nDCG@5 here but provides us with a significant



improvement in the judged one. This is also the largest judged nDCG@5 we have observed.
Based on the observations already made during development, this fact is not a big surprise. The
explicit value used for 𝜃 was chosen so that we get an ideal nDCG@5. The nDCG@5 shown
in Table 1 could thus vary quite a bit for unknown topics and might require a corresponding
adjustment of the 𝜃.

The fact that the Trustworthiness Score has no or a relatively small influence was to be
expected due to the very low correlation already described. Nevertheless, the improvement in
the judged nDCG@5 should be emphasized here.

BERT falls somewhat out of the scheme here. On the one hand, adding the score computed
with BERT gives the largest normal nDCG@5 among the combinations that added only one
score, yet this value is still worse than the baseline. On the other hand, BERT has the worst score
on the judged nDCG@5 within the same group. A possible explanation for this conspicuousness
is that, compared to the other approaches, BERT might assign higher scores to documents
that have already been evaluated, and assigns comparatively few non-evaluated documents
higher scores. This is especially plausible if one takes into account that BERT’s training was
based on the evaluated documents of the last year and that BERT therefore should know the
correct solutions. Taking this into account, the deterioration in both nDCG@5s compared to
the baseline is unexpected.

We now proceed with the further combination based on the order of table 1. Therefore, the
first thing that follows is preprocessing together with the query expansion. Again, these two
preprocessing steps together produce a relatively small change due to their respective weights.
Thus, the normal nDCG@5 lies between the two previous ones and the judged nDCG@5 is
identical to the better one.

The combination of Argument Score and BERT is interesting at this point, as together they
outperform the already well-performing judged nDCG@5 of only activating the Argument
Score. In particular, this is noteworthy because based on the individually activated components,
BERT does not appear to provide significant additional value. However, the improvement of
the judged nDCG@5 shows that the information BERT can contribute benefits our pipeline.
It is also important to note that this combination provides the best-judged nDCG@5 that we
have observed in our experiment. Here it can be concluded that the information encoded by the
argument score and BERT differ from each other. Furthermore, they complement each other in
a way that benefits the ranking.

In the following, only combinations are considered in which the preprocessing component
and the query expansion are activated. We start with the Argumentative Score. As expected
from the observations already described, the Argumentative Score again performs well here
and provides us with a judged nDCG@5 of over 0.6. However, this has worsened minimally
compared to before by about 0.005. The normal nDCG@5 has worsened by ≈ 0.05.

The combination of preprocessing, query expansion, and BERT show a degradation in normal
nDCG@5 of ≈ 0.008 and an improvement in judged nDCG@5 of ≈ 0.002.

A more significant change can be observed in the version that uses preprocessing, query
expansion, argumentative score, and BERT. This has a significant degradation of ≈ 0.07 or ≈
0.04 when considering the normal nDCG@5 compared to the two active components respec-
tively. Interestingly, this combination also yields a worse judged nDCG@5. Comparing this
combination with the versions that use preprocessing query expansion and the argument score



or BERT shows, as before, that BERT and argument score benefits from each other.
Based on the observations described, we have decided to submit the combinations marked in

Table 1. The submission was done using TIRA. TIRA is a software solution that sandboxes the
submitted software in a virtual machine and keeps a copy of it. Among other things, this would
make it easier to use the submitted software again in the future [28].

7. Conclusion

As a first conclusion, our most promising approach is the combination of the argument score with
BERT. This combination is followed very closely by these two scores together with preprocessing
and query expansion. In particular, the argument score always prevails as the most important
score in our approach and plays a role in all substantial improvements.

Furthermore, based on our observations, an order of utility can be established for the individ-
ual areas of our software. In this order, the argument score would undoubtedly be the most
important. It would be followed by BERT, even if BERT in particular only provides an improve-
ment as an extension in conjunction with the argument score. After BERT there would follow
the Trusworthinesss and last but not least would come Preprocessing and query expansion.

Another finding is that the pipeline presented here achieves an improvement in ranking
among the evaluated documents. However, this result should be taken with a grain of salt, since
some parts are designed to perform well in the problem studied here. In particular BERT as
well as the SVM are addressed here. The problem that arises from this is that the parameters
learned may not be applicable to new problems.

Nevertheless, we can state that we deliver several combinations through our pipeline that
have the potential to outperform the baseline based on our observations.

For the future, our approach can serve as a foundation and can be extended relatively easily
with new scores. This is particularly evident in the fact that many parts of the pipeline can
act independently of each other and the exact number of scores is not fixed. If our formalities
are complied to, the internal data structure would only have to be extended to include the new
score and all other components would take this additional information into account and include
it in their calculations.

A. Code and data availability

Our complete code is available at https://github.com/JanNiklasWeder/Touche-21-Task-2. All
necessary data will be downloaded automatically if not already locally available in the respective
folder.
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