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Abstract

This paper describes our participation in
SemEval-2023 Task 4, ValueEval: Identifi-
cation of Human Values behind Arguments.
The aim of this task is to identify whether
or not an input text supports each of the 20
pre-defined human values. Previous work on
human value detection has shown the effec-
tiveness of a sequence classification approach
using BERT. However, little is known about
what type of task formulation is suitable for
the task. To this end, this paper explores
various task formulations, including sequence
classification, question answering, and ques-
tion answering with chain-of-thought prompt-
ing and evaluates their performances on the
shared task dataset. Experiments show that a
zero-shot approach is not as effective as other
methods, and there is no one approach that is
optimal in every scenario. Our analysis also re-
veals that utilizing the descriptions of human
values can help to improve performance.

1 Introduction

SemEval-2023 Task 4 involves detecting human
values behind argumentative sentences in English.
Given a conclusion, stance, and premise, the task
is to classify whether they entail each of the 20
pre-defined values (Kiesel et al., 2023). The perfor-
mance improvement in this task can contribute to
more precise analysis of argumentative texts using
argument and opinion mining techniques.

In this paper, we explore various task formula-
tions for detecting human values in texts, including
sequence classification, question answering, and
question answering with chain-of-thought prompt-
ing. Previous work on human value detection
(Kiesel et al., 2022) thus far has only investigated
the effectiveness of sequence classification using
BERT (Devlin et al., 2019), and it is still unknown
what type of task formulation is effective for human
value detection.

To this end, we test a variety of pretrained lan-
guage models. For sequence classification, we em-
ploy encoder-based models such as RoBERTa (Liu
et al., 2019) and DeBERTaV3 (He et al., 2021). For
question answering, we test both encoder-decoder
and decoder models, including T5 (Raffel et al.,
2020), BART (Lewis et al., 2020), and GPT-3 (text-
davinci-003) (Brown et al., 2020). For question
answering with chain-of-thought prompting, we
use GPT-3 (text-davinci-003) in a zero-shot man-
ner. We measure the detection performance of all
approaches on three shared task datasets (Mirza-
khmedova et al.), including the two optional test
datasets: Nahj al-Balagha and New York Times.
We also verify the effectiveness of three additional
training strategies for sequence classification: loss
weighting, pretraining on a similar corpus: Val-
ueNet (Qiu et al., 2022), and adding a value de-
scription to an input.

In the competition1, our approach using
RoBERTaLARGE trained with sequence classifica-
tion and weighted loss achieved macro F1 scores of
0.51 and 0.34 on the Main and New York Times test
datasets and was ranked 7th and 1st, respectively.
For the Nahj al-Balagha dataset, the submitted ap-
proach using a mixture of the highest performing
models with respect to each value on the validation
set demonstrated a macro F1 score of 0.34 and was
ranked 4th.

Our contributions are three-folds.

• This study is the first to explore various task
formulations for detecting human values in
argumentative texts (Section 2).

• We conduct five analyses to examine the be-
havior of our approaches and verify the effec-

1This paper reports the results not only with our submit-
ted systems but also other approaches for a comprehensive
comparison of various task formulations. Table 4 includes
the detailed results of our submitted system on the Main test
dataset, and Appendix A details our submitted systems.
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tiveness of three additional training strategies
for sequence classification (Section 5).

• We demonstrate that utilizing the descriptions
of human values can improve detection per-
formance (Section 5.2 and 5.3).

2 Methodology

This section explains our approaches in this work.
Table 1 provides an overview of each approach with
the input and output formats and corresponding
example model names.

2.1 Sequence Classification

Our first approach is sequence classification (SC),
which has been tested in previous work (Kiesel
et al., 2022). Let s = [w0, . . . , wn] be an input
sequence, where w denotes a token. In SC, a
model takes s as input and outputs a hidden vector
hs = [e0, . . . , en] corresponding to s. We put a
linear layer on top of the model for final classifi-
cation. Because the task is formulated as multi-
label classification, the model computes the score
of each value category using a sigmoid function
and is trained with the binary cross-entropy loss
averaged over all 20 classes (values).

2.2 Question Answering

Because the shared task is fine-grained and has a
variety of value categories, it may be difficult for
a model to accurately detect human values in texts
only using a (conclusion, stance, premise) triple as
in SC. If the model can capture subtle differences in
value definitions, the correct values in texts can be
identified more easily. To this end, we investigate
adding descriptions of values to the model’s input.

Here, we formulate the task as question answer-
ing (QA) to accommodate a value description in
input. We obtain all descriptions of the 20 val-
ues from the shared task website2 and generate a
yes/no question for each value description given
a (premise, stance, conclusion) triple (see Table 1
for an example). This means we create 20 sam-
ples per triple and need to feed them into a model
one by one to obtain predictions for a particular
triple. We fine-tune both encoder-decoder and de-
coder models, including T5, BART, and GPT-3
(text-davinci-003).

2https://touche.webis.de/semeval23/
touche23-web/index.html#task

2.3 Question Answering with
Chain-of-Thought Prompting

Previous studies (Kojima et al., 2022; Wei et al.,
2022) have reported that large language models
(LLMs), e.g., GPT-3, are effective even in compli-
cated tasks that need reasoning. We assume that
the shared task falls in this category; thus, utilizing
an LLM can be an effective approach to detecting
human values behind texts. One practical problem
arises in using an LLM: financial costs. To reduce
the cost as much as possible, we use a zero-shot ap-
proach with chain-of-thought prompting (Kojima
et al., 2022), which shows significant performance
improvement over zero-shot LLMs on various rea-
soning benchmark datasets. This approach is a
two-step procedure exemplified in Table 1 (QA w/
CoT). Specifically, we employ a similar prompt
used for the question answering approach as a first
query with the addition of “Let’s think step by step.”
to its end. After obtaining the corresponding output
from GPT-3 (text-davinci-003), we concatenate the
first prompt, output, and “Therefore, the answer
(YES or NO) is” and feed it to GPT-3 again to
obtain the final decision.

3 Experimental Setup

Data We used the official training dataset for
training and the official validation dataset for mon-
itoring generalization performance. For evaluation,
we used the Main, Nahj al-Balagha, and New York
Times test datasets. Details of each dataset can be
found in the task paper (Kiesel et al., 2023) and on
the website3.

Evaluation Metrics The evaluation metrics are
a macro F1 score averaged over all value categories
and F1 score for each value.

Models Table 2 presents the list of models tested
for each approach. For simplicity, we only com-
pare the results of bold models that showed the
highest macro F1 score on the validation set in the
remainder of this paper.

Implementation Details We implemented each
approach with PyTorch (Paszke et al., 2019) and
Hugging Face transformers (Wolf et al., 2020) ex-
cept for GPT-3. For GPT-3, we used the official
API provided by OpenAI to use both the base and

3https://touche.webis.de/semeval23/
touche23-web/index.html
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Approach / Input Output Example Models

Sequence Classification (SC) (§2.1)
I am {stance} the argument: {conclusion}. And, I have [0, 1] for roberta-large
the premise: {premise}. 20 values microsoft/deberta-v3-large

Question Answering (QA) (§2.2)
Question: I am {stance} the conclusion that {conclusion}. That’s [Yes, No] t5-large
because I have the premise: “{premise}.” Do you think I am facebook/bart-large
explicitly supporting the value that {value}? Answer:

Question Answering with Chain-of-Thought (QA w/ CoT) (§2.3)
# Input 1 # Output 1

Question: I {agree | disagree} with the conclusion that {conclusion}. # Reasoning texts GPT-3
I have the premise: “{premise}” Do you think that I EXPLICITLY generated by (text-davinci-003)
support the value about {value}? Answer: Let’s think step by step. GPT-3

# Input 2 # Output 2
[Input 1] + [Output 1] + “Therefore, the answer (YES or NO) is” [Yes, No]

Sequence Classification with Human Value Description (§5.3)
I am {stance} the argument: {conclusion}. And, I have [0, 1] roberta-large
the premise: {premise}. So, I am supporting the value that {value}. microsoft/deberta-v3-large

Table 1: Input/Output format of each approach. “stance”, “conclusion”, and “premise” are provided in the official
datasets. For QA with Chain-of-Thought, we assigned “agree” when “stance” is “in favor of”, while we put
“disagree” if “stance” is “against”. We obtained value descriptions from the shared task website.1 Each model
identifier corresponds to the model name in the transformers library, except for GPT-3.

Approach Models

SC roberta-large, microsoft/deberta-v3-large,
google/rembert, nghuyong/ernie-2.0-large-en,
microsoft/infoxlm-large, google/electra-large-
discriminator, google/canine-s

QA facebook/bart-large, t5-base, t5-large,
google/flan-t5-base, google/flan-t5-large,
GPT-3 (text-davinci-003) (on some values)

QA w/ CoT GPT-3 (text-davinci-003) (zero-shot)

Table 2: List of models tested in this paper. In the exper-
iments, we used bold models that showed the highest
F1 macro score on the validation set for each approach.

fine-tuned text-davinci-003 models. The hyperpa-
rameter settings are detailed in Appendix A.

4 Results

Table 3 presents the macro F1 and F1 score of each
value category with respect to the three approaches
introduced in Section 2. We also include the results
of the baseline (“1-Baseline”) that always assigns
1 to all instances for reference. Overall, QA ex-
hibited the highest macro F1 scores of 0.54 and
0.42 on the Main and Nahj al-Balagha datasets, re-
spectively. SC showed the highest macro F1 score
of 0.28 on the New York Times dataset. QA w/
CoT resulted in the lowest macro F1 score among
the three approaches though it outperformed the
baseline. This indicates that it is essential to train
a model on annotated data for human value detec-

tion in order to effectively identify values behind
argumentative texts.

As for the value-wise F1 results, the most ef-
fective approach depends on the value categories
and datasets, indicating that there exists no one-
size-fits-all approach for human value detection.
However, we see a general trend that QA slightly
outperforms SC the majority of the times. The
main difference between the two is whether or not
an input has a value description. Thus, we hypothe-
size that utilizing the descriptions of human values
can boost the detection performance. We verify our
hypothesis in the Sections 5.2 and 5.3.

5 Analysis

5.1 Mitigating Data Imbalances

As shown in Table 4, the official dataset is imbal-
anced with respect to all value categories, which
makes it challenging for a model to acquire the
useful representations for the task due to the lim-
ited number of positive samples. We found in the
preliminary experiments that value-wise F1 scores
on the validation data were often low for value
categories with low frequency. To address with
this problem, we utilized an adjusted loss function
with respect to label frequency in SC4 and verified
its effectiveness on the Main test dataset. For im-

4We only targeted SC because it achieved the highest
macro F1 score on the validation data.
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Main
1-Baseline .26 .17 .40 .09 .03 .41 .13 .12 .12 .51 .40 .19 .31 .07 .09 .35 .19 .54 .17 .22 .46
SC .51 .49 .69 .16 .24 .61 .43 .49 .29 .72 .63 .59 .58 .45 .16 .54 .42 .73 .83 .42 .55
QA .54 .57 .70 .15 .47 .66 .40 .54 .31 .78 .67 .66 .57 .31 .10 .50 .33 .76 .86 .47 .53
QA w/ CoT .31 .26 .47 .20 .06 .29 .07 .05 .22 .43 .42 .29 .31 .08 .06 .36 .21 .59 .58 .31 .40

Nahj al-Balagha
1-Baseline .13 .04 .09 .01 .03 .41 .04 .03 .23 .38 .06 .18 .13 .06 .13 .17 .12 .12 .01 .04 .14
SC .32 .09 .32 .40 .25 .61 .11 .00 .50 .41 .20 .45 .25 .33 .20 .33 .18 .23 .50 .00 .25
QA .42 .14 .44 .50 .57 .62 .50 .20 .59 .48 .40 .56 .35 .29 .35 .40 .37 .29 .25 .00 .40
QA w/ CoT .18 .02 .13 .00 .11 .31 .00 .18 .30 .40 .10 .26 .18 .07 .16 .22 .13 .19 .06 .10 .22

New York Times
1-Baseline .15 .05 .03 - .03 .28 .03 - .05 .51 .20 - .07 .03 .12 .12 .26 .24 .03 .03 .33
SC .28 .20 .17 - .00 .40 .00 - .00 .55 .33 - .24 .67 .18 .14 .33 .54 .29 .00 .37
QA .25 .22 .20 - .00 .34 .00 - .00 .61 .41 - .33 .00 .00 .11 .29 .48 .50 .00 .43
QA w/ CoT .17 .11 .00 - .00 .00 .00 - .00 .49 .22 - .07 .04 .35 .12 .25 .35 .13 .08 .33

Table 3: F1 scores of our approaches on three test datasets. The highest scores for each value category are
underlined.

plementation, we adjusted the weight of positive
samples in each value category according to the
frequency in the training data when computing the
binary cross-entropy loss.

As Table 4 shows, SC with adjusted loss slightly
outperformed SC on the validation dataset, but not
on the Main test dataset in most cases. The Pear-
son and Spearman correlations between the ratio
of positive samples in the training data for each
value category and its performance improvement
over SC were extremely small, -0.09 and -0.07,
respectively. Although the loss is adjusted to im-
prove performance on low-frequency labels, we did
not see a correlation between the ratio of positive
samples and performance improvement over SC.
These results suggest that the adjusted loss func-
tion does not have much impact on the performance
improvement.

5.2 Pre-training on ValueNet

It is very unlikely that argumentative texts in the of-
ficial datasets explicitly mention underlying human
values. Therefore, it may be difficult for models
to acquire the semantic representations for effec-
tively identifying human values. To address this
challenge, we pre-trained an SC model on a similar
corpus, ValueNet (Qiu et al., 2022), motivated by
the assumption that it could provide the model with

prior knowledge of human values and thus improve
performance. ValueNet contains short texts about
social scenarios (e.g., “applying to a far-away uni-
versity against my dad’s wishes”) and the related-
ness (-1/0/1) between the texts and specific human
values. The value categories in ValueNet are simi-
lar to those in the shared task as both are based on
Schwartz’s theory (Schwartz, 2012).5

During pre-training, a model predicted the relat-
edness (-1/0/1) between a given scenario text and
value and was trained with the mean squared error
loss, following Qiu et al. (2022). We generated
input texts with the following template.

The premise {scenario text} is supporting
the value towards {value}.

As a {value}, we used “Definition goal” defined
by Schwartz (2012). The model was then fine-
tuned on the shared task dataset as described in
2.1. We used RoBERTa LARGE, which achieved the
highest macro F1 score on the validation set for the
experiments. During fine-tuning, we applied the
adjusted loss as this approach exhibited the best F1
score on the validation set (see Section 5.1).

As Table 4 shows, SC with the adjusted loss
and ValueNet outperformed or was on par with SC

5Some values in this task are integrated in ValueNet, and
some do not exist in ValueNet. Appendix E describes the
correspondence between the two datasets.
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Sequence Classification (SC)
Original .527 .51 .49 .69 .16 .24 .61 .43 .49 .29 .72 .63 .59 .58 .45 .16 .54 .42 .73 .83 .42 .55
w/ adjusted loss† .532 .50 .48 .66 .22 .23 .61 .43 .45 .32 .74 .63 .57 .54 .47 .15 .53 .36 .74 .81 .42 .55
w/ adjusted loss

& ValueNet .525 .52 .51 .65 .26 .37 .59 .49 .52 .31 .73 .63 .57 .55 .48 .22 .53 .37 .72 .84 .42 .55

w/ HVD .551 .56 .45 .71 .29 .44 .66 .46 .56 .37 .74 .68 .67 .59 .56 .26 .53 .43 .76 .85 .43 .61

Question Answering (QA)
Original .523 .54 .57 .70 .15 .47 .66 .40 .54 .31 .78 .67 .66 .57 .31 .10 .50 .33 .76 .86 .47 .53
Fine-tuned GPT-3 - - .58 - .17 - - - - .27 - - .67 - - .39 - .29 - - .39 -

Ratio in training data - - .18 .26 .05 .03 .28 .11 .12 .07 .37 .32 .11 .22 .04 .07 .25 .15 .39 .08 .12 .20

Table 4: Performances of our model variants on Main test dataset. The row with † corresponds to the results of the
submitted system.

with the adjusted loss on the Main test dataset in
many values. The performances of value categories
whose positive ratio in the training data was lower
than 0.1 improved compared to those with SC w/
adjusted loss except for “Face.” The Pearson and
Spearman correlations between the ratio of positive
samples in the training data for each value cate-
gory and its performance improvement over SC
w/ adjusted loss were -0.56 and -0.57, respectively.
These results suggest that ValueNet improves the
performance of low-frequency value categories.

5.3 Sequence Classification with Human
Value Descriptions

As observed in Section 5.2, the prior knowledge
of human values seems to improve the detection
performance of low-frequency human values. Here,
we try to incorporate Human Value Descriptions
into SC (SC w/ HVD), which should help a model
capture the semantic representations to identify hu-
man values. We followed the same setting as that of
SC except for the input and output formats shown
in Table 1, and employed deberta-v3-large, which
achieved the highest macro F1 score on the val-
idation dataset. This time, we need to feed an
individual query for each value into the model to
obtain a prediction.

As seen in Table 4, SC w/ HVD exhibited the
highest macro F1-score and outperformed SC on
almost all value categories. In addition, the Pear-
son and Spearman correlations between the ratio of
positive samples in the training data for each value
category and its performance improvement over SC
were -0.55 and -0.61, respectively. These results in-
dicate that incorporating human value descriptions
into an input is effective for identifying human

values behind argumentative texts, especially for
low-frequency labels.

5.4 Fine-tuning with GPT-3

As explained in Table 2, we only fine-tuned GPT-3
(text-davinci-003) on a limited number of value cat-
egories due to budget constraints, including “Self-
direction: thought,” “Stimulation,” “Face,” “Tra-
dition,” “Humility,” “Benevolence: dependability,”
and “Universalism: tolerance,” which exhibited low
macro F1 score in the validation data regardless of
the approaches used.

The results in Table 4 show that some F1 scores
improved, but their differences were small except
“Humility.” This suggests that although fine-tuned
GPT-3 does not always show the highest result,
there might be human values that fine-tuned GPT-
3 is good at identifying. We leave the thorough
investigation of such values as future work.

5.5 Prediction Tendency of Question
Answering with Chain-of-Thought
Prompting

As shown in Table 3, zero-shot question answering
with chain-of-thought prompting (QA w/ CoT) by
GPT-3 exhibited the lowest macro F1 scores on
all datasets. To determine the causes of the low
performance of QA w/ CoT, we examined its output
trends and error cases. To simplify the discussion,
we focused on the validation and Main test datasets.

Table 5 presents the types of answers generated
by QA w/ CoT, the number of each type, and the
example answers. While the ratio of “Yes” in gold
answers is 0.168 on the validation dataset, the ratio
of answers starting with “yes” by QA w/ CoT is
0.291. Thus, QA w/ CoT tends to answer “Yes,”
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Types of answers Ratio in
the validation dataset

Ratio in
the Main test dataset

Example answers and the number of that
in the Main test dataset

Answers starting with “yes” 0.291
(11,039/37,920)

0.304
(9,583/31,520)

“YES.” (5,889)
“YES, you are implicitly supporting” (862)

Answers starting with “no” 0.676
(25,620/37,920)

0.658
(20,742/31,520)

“NO.” (16,634)
“NO, you do not explicitly” (2,570)

Other 0.033
(1,261/37,920)

0.038
(1,195/31,520)

“not explicitly stated in the premise” (207)
“not clear-cut. It” (135), “up to you.” (70)

Table 5: Types of answers which correspond to # Output 2 of QA w/ CoT in Table 1.

Prompt (# Input 1 in Table 1): Question: I agree with the conclusion that the use of public defenders should be mandatory. I
have the premise: "the use of public defenders should be mandatory because some people don’t have money for a lawyer and this
would help those that don’t." Do you think I EXPLICITLY support the value that it is good to be successful in accordance with
social norms? Answer: Let’s think step by step.

Reasoning Text (# Output 1 in Table 1): The premise states that the use of public defenders should be mandatory because
it would help those who don’t have money for a lawyer. This premise does not explicitly support the value that it is good to
be successful in accordance with social norms. However, the conclusion that the use of public defenders should be mandatory
implies that it is good to be successful in accordance with social norms, as it implies that those who don’t have money for a
lawyer should be given the same opportunity to be successful as those who do. Therefore, while the premise does not explicitly
support the value that it is good to be successful in accordance with social norms, the conclusion does

: Paraphrasing the given premise, : Stating that the premise does not explicitly support the given value,
: Explaining the interpretation that associates the given conclusion with the value

Table 6: An example reasoning text generated by QA w/ CoT when the model’s answer started with “yes.”

excessively.

In addition, QA w/ CoT sometimes generates
answers that do not follow the instructions. As
for an example of an answer starting with “yes,”
the model answered whether to implicitly support
the values, although the first prompt (# Input 1)
in Table 1 asked whether to explicitly support the
values. For all examples of the “Other” type in
Table 5, the answers were ambiguous, although the
second prompt (# Input 2) in Table 1 instructed the
model to answer with “Yes” or “No.”

To understand how the model wrongly out-
puts answers starting with “yes” on the valida-
tion dataset (i.e., false positive cases), we analyzed
the intermediate reasoning texts generated by the
model based on the first prompt (# Input 1) in Ta-
ble 1. Some of the reasoning texts stated that a
given premise did not explicitly support the given
value but the given premise or conclusion implic-
itly supported the value. Table 6 presents one such
example. In these error cases, the model gener-
ally paraphrased the given premise first, stated that
the premise did not explicitly support the given
value, and then explained the interpretation that
associates the premise or conclusion with the value.
The ratio of reasoning text having the strings of
“does not explicit” and “however” among the false
positives case on the validation dataset was 0.662

(5,277/7,966). To remedy these cases, we need to
further investigate how to make the model not al-
low implicit support for the values, such as through
prompt engineering. Post-hoc modification of the
answer based on the content of its reasoning texts
is also promising.

6 Discussion and Conclusion

This paper has explored three task formulations
for human value detection: SC, QA, and QA w/
CoT, and investigated the effectiveness of each ap-
proach on the shared task dataset. Experimental
results demonstrated that an one-size-fits-all ap-
proach does not exist for this task, but supervised
learning with the dedicated task data is necessary
to obtain decent detection performance.

As mentioned in Section 4, we hypothesized that
utilizing the descriptions of human values can boost
detection performance, which was supported by the
results in Sections 5.2 and 5.3. Although there is
no one task formulation that is always effective
for all value categories, different value categories
can favor different task formulations. For instance,
QA largely outperformed SC w/ HVD in “Self-
direction: thought” and “Universalism: tolerance,”
though the only difference between the two is in
their architecture. Investigating this trend in detail
can be a future research direction.
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Hyperparameter Value

Batch size 32
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 2e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention Dropout 0.1
Seed 61

Table 7: Hyperparameters of best model on Main and
New York Times dataset.

Appendices

A Submitted Systems

Here, we detail our submitted systems that achieved
the highest macro F1 score among our runs in each
dataset.

A.1 Main

Our most accurate system for the Main test dataset
utilized RoBERTaLARGE trained with sequence
classification and loss weighting6. We used one
NVIDIA Tesla V100 (32GB) and optimized the
model with AdamW (Loshchilov and Hutter, 2019).
Table 7 shows the hyperparameter settings.

A.2 Nahj al-Balagha

Our most accurate system for the Nahj al-Balagha
test dataset used a mixture of models and task
formulations. We selected a highest-performing
model for each value category on the basis of a
F1 score on the validation set. Table 8 shows the
detailed configuration for each value category.

A.3 New York Times

Our most accurate system for the New York Times
test dataset is the same as that one for the Main test
dataset.

B Cost of GPT-3

The total cost of QA w/ CoT was $2324.63 to ob-
tain predictions for the validation set and the three
test datasets in a zero-shot manner, while that for
QA was $964.04 to fine-tune GPT-3 and make pre-
dictions on the test datasets over the seven value
categories listed in Table 4.

6See details in Section 5.1

C Fine-tuning with Instructions

Some pre-trained models (e.g., Flan-T5) are fine-
tuned with texts beginning with instructions, and
they have shown promising results on various NLP
benchmarks (Chung et al., 2022). Here, we also
verified the effectiveness of the QA approach with
instructions (QA w/ Instruct) in the task of human
value detection. The only difference between QA
w/ Instruct and QA is whether or not an input has
an instruction sentence as demonstrated in Table
18.

As shown in Table 19, QA w/ Instruct outper-
formed QA on the validation dataset, but it did
not always improve F1 scores on the test dataset.
While the F1 score of “Conformity: interpersonal”
largely improved compared to QA, that of “Hedo-
nism” largely degraded. Therefore, no positive im-
pact on detection performance was observed with
respect to the usage of QA w/ Instruct.

D Prediction Tendency

Here, we analyze the tendency of prediction for
the sequence classification (SC), question answer-
ing (QA), and question answering with chain-of-
thought prompting (QA w/ CoT) based on precision
and recall to better understand the characteristics
of each approach in human value detection. Table
20 presents the precision and recall of the three
approaches on the Main test dataset. QA consis-
tently achieved the highest precision for all value
categories, while its recall values were consistently
lower than those of SC except “Hedonism” and
“Power: resources.” QA w/ CoT achieved the high-
est recall values in several value categories but ex-
hibited significantly low precision, indicating that
GPT-3 with zero-shot chain-of-thought prompting
tends to say “YES” to a given question regardless
of correctness in this task. This is consistent with
the tendency described in Section 5.5.

One possible reason for the low recall values in
QA is that the ratio of “yes” in the training data was
quite low (0.17), forcing a model to generate “no”
most of the time. We assume that negative sam-
pling can be effective for improving recall values
for QA.

E ValueNet

Table 21 presents the correspondence between hu-
man values in Task 4 (Mirzakhmedova et al.) and
ValueNet (Qiu et al., 2022). Table 21 also presents
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Value Task Formulation Model Hyperparameters

Self-direction: thought SC w/ adjusted loss google/rembert Table 9
Self-direction: action QA t5-large Table 10
Stimulation SC w/ adjusted loss roberta-large Table 7
Hedonism SC w/ adjusted loss google/rembert Table 9
Achievement QA facebook/bart-large Table 11
Power: dominance SC w/ adjusted loss roberta-large Table 7
Power: resources SC nghuyong/ernie-2.0-large-en Table 12
Face SC w/ adjusted loss roberta-large Table 7
Security: personal QA t5-large Table 10
Security: societal QA t5-large Table 10
Tradition SC roberta-large Table 13
Conformity: rules SC w/ adjusted loss and ValueNet roberta-large Table 14
Conformity: interpersonal SC w/ adjusted loss microsoft/deberta-v3-large Table 15
Humility QA Fine-tuned GPT-3 (text-davinci-003) Table 16
Benevolence: caring SC google/rembert Table 17
Benevolence: dependability SC w/ adjusted loss google/rembert Table 9
Universalism: concern QA facebook/bart-large Table 11
Universalism: nature SC roberta-large Table 13
Universalism: tolerance SC roberta-large Table 13
Universalism: objectivity SC w/ adjusted loss and ValueNet roberta-large Table 14

Table 8: Model configurations for Nahj al-Balagha test dataset.

Hyperparameter Value

Batch size 16
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 2.5e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Classification dropout 0.1
Seed 23

Table 9: Hyperparameters for sequence classification
with adjusted loss using google/rembert.

the frequency of each human value category on
both training dataset.

Hyperparameter Value

Batch size 16
Maximum number of epochs 5
Learning rate scheduler linear
Peak learning rate 2e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length for encoder 512
Sequence length for decoder 128
Attention dropout 0.1
Seed 42

Table 10: Hyperparameters for question answering us-
ing t5-large.

Hyperparameter Value

Batch size 64
Maximum number of epochs 5
Learning rate scheduler linear
Peak learning rate 2e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length for encoder 512
Sequence length for decoder 128
Attention dropout 0.1
Seed 61

Table 11: Hyperparameters for question answering us-
ing facebook/bart-large.
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Hyperparameter Value

Batch size 32
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 2e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention dropout 0.1
Seed 23

Table 12: Hyperparameters for sequence classification
using nghuyong/ernie-2.0-large-en.

Hyperparameter Value

Batch size 32
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 3e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention dropout 0.1
Seed 42

Table 13: Hyperparameters for sequence classification
using roberta-large.

Hyperparameter Value

Batch size 32
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 2e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention dropout 0.1
Seed 23

Table 14: Hyperparameters for sequence classification
with adjusted loss and ValueNet using roberta-large.

Hyperparameter Value

Batch size 16
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 1.5e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention dropout 0.1
Seed 61

Table 15: Hyperparameters for sequence classification
with adjusted loss using microsoft/deberta-v3-large.

Hyperparameter Value

max_tokens 1
temperature 0
n_epochs 4
batch_size 8
learning_rate_multiplier 0.1
prompt_loss_weight 0.01

Table 16: Hyperparameters for fine-tuned GPT-3 (text-
davinci-003).

Hyperparameter Value

Batch size 16
Maximum number of epochs 10
Learning rate scheduler linear
Peak learning rate 2.0e-05
Warmup steps 0
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Classification dropout 0.1
Seed 61

Table 17: Hyperparameters for sequence classification
using google/rembert.
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Approach / Input Output Example Models

Question Answering (QA) (§2.2)
Question: I am {stance} the conclusion that {conclusion}. That’s [Yes, No] t5-large
because I have the premise: “{premise}.” Do you think I am facebook/bart-large
explicitly supporting the value that {value}? Answer:

Question Answering with Instruction (QA w/ Instruct) (Appendix C)
Answer the following yes/no question. [Yes, No] google/flan-t5-large
I am {stance} the conclusion that {conclusion}. That’s because
I have the premise: “{premise}.” Can you say that I am explicitly
supporting the value that {value}?

Table 18: Input/Output format of QA approach and QA approach with instructions. “stance”, “conclusion”, and
“premise” are provided in the official datasets. We obtained value descriptions from the shared task website.1
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Question Answering (QA)
Original .523 .54 .57 .70 .15 .47 .66 .40 .54 .31 .78 .67 .66 .57 .31 .10 .50 .33 .76 .86 .47 .53
w/ Instruction .525 .53 .54 .70 .17 .36 .68 .40 .53 .34 .78 .67 .66 .57 .38 .10 .51 .31 .75 .87 .47 .54
Fine-tuned GPT-3 - - .58 - .17 - - - - .27 - - .67 - - .39 - .29 - - .39 -

Table 19: Performances of QA approach and its variants on Main test dataset.

Metric / Approach All 1.
Se

lf-
di

re
ct

io
n:

th
ou

gh
t

2.
Se

lf-
di

re
ct

io
n:

ac
tio

n

3.
St

im
ul

at
io

n

4.
H

ed
on

is
m

5.
A

ch
ie

ve
m

en
t

6.
Po

w
er

:d
om

in
an

ce

7.
Po

w
er

:r
es

ou
rc

es

8.
Fa

ce

9.
Se

cu
ri

ty
:p

er
so

na
l

10
.S

ec
ur

ity
:s

oc
ie

ta
l

11
.T

ra
di

tio
n

12
.C

on
fo

rm
ity

:r
ul

es

13
.C

on
fo

rm
ity

:i
nt

er
pe

rs
on

al

14
.H

um
ili

ty

15
.B

en
ev

ol
en

ce
:c

ar
in

g

16
.B

en
ev

ol
en

ce
:d

ep
en

da
bi

lit
y

17
.U

ni
ve

rs
al

is
m

:c
on

ce
rn

18
.U

ni
ve

rs
al

is
m

:n
at

ur
e

19
.U

ni
ve

rs
al

is
m

:t
ol

er
an

ce

20
.U

ni
ve

rs
al

is
m

:o
bj

ec
tiv

ity

Precision
SC .46 .40 .67 .27 .24 .54 .40 .45 .28 .63 .53 .50 .49 .47 .15 .45 .36 .63 .83 .35 .57
QA .59 .57 .75 .41 .59 .63 .63 .47 .48 .73 .67 .66 .54 .65 .20 .51 .52 .69 .90 .53 .72
QA w/ CoT .23 .16 .33 .16 .05 .43 .11 .09 .15 .37 .30 .23 .24 .04 .06 .27 .13 .50 .53 .20 .32

Recall
SC .56 .63 .71 .12 .23 .70 .46 .54 .29 .84 .78 .72 .70 .43 .19 .66 .51 .89 .83 .52 .54
QA .49 .57 .65 .09 .38 .68 .30 .63 .23 .83 .66 .66 .59 .21 .07 .49 .24 .85 .82 .42 .41
QA w/ CoT .46 .64 .81 .27 .08 .22 .06 .04 .42 .52 .71 .40 .44 .87 .07 .57 .45 .73 .65 .65 .53

Table 20: Precision and Recall scores of our approaches on Main test dataset. The highest precision and recall for
each value category is underlined.
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Human Value Task4
Freq.

ValueNet
Freq.

Self-direction: thought 988 325
Self-direction: action 1,395

Stimulation 247 1,281

Hedonism 172 2,160

Achievement 1,512 854

Power: dominance 610 878
Power: resources 625

Face 382 -

Security: personal 2,000 3691
Security: societal 1,728

Tradition 568 1,301

Conformity: rules 1,177 1,884
Conformity: interpersonal 207

Humility 395 -

Benevolence: caring 1,332 7,667
Benevolence: dependability 806

Universalism: concern 2,081 1,333
Universalism: nature 427
Universalism: tolerance 664
Universalism: objectivity 1,054

ALL 5,393 21,374

Table 21: Correspondence between human values in
Task4 and ValueNet and their frequency in the training
dataset.
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