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Abstract

To improve the ability of language models to
handle Natural Language Processing (NLP)
tasks and intermediate step of pre-training has
recently been introduced. In this setup, one
takes a pre-trained language model, trains it on
a (set of) NLP dataset(s), and then finetunes
it for a target task. It is known that the selec-
tion of relevant transfer tasks is important, but
recently some work has shown substantial per-
formance gains by doing intermediate training
on a very large set of datasets. Most previous
work uses generative language models or only
focuses on one or a couple of tasks and uses
a carefully curated setup. We compare inter-
mediate training with one or many tasks in a
setup where the choice of datasets is more arbit-
rary; we use all SemEval 2023 text-based tasks.
We reach performance improvements for most
tasks when using intermediate training. Gains
are higher when doing intermediate training
on single tasks than all tasks if the right trans-
fer task is identified. Dataset smoothing and
heterogeneous batching did not lead to robust
gains in our setup. 1

1 Introduction

The introduction of word embeddings and later con-
textualized transformer-based models, i.e. Large
Language Models (LLM), have led to perform-
ance improvements on many Natural Language
Processing tasks. Technically these approaches
are multi-task learning approaches (with parameter
sharing over time), where we first train a language
model on raw data, save the weights, and then re-
train the weights for our target task. It has been
shown that intermediate steps of training can be
beneficial for downstream performance. This in-
termediate step of training can be done through
language modeling to adapt to new domains or
languages (Gururangan et al., 2020; Muller et al.,

1Code available at: https://bitbucket.org/
robvanderg/semeval2023/

2021) or on NLP datasets directly (Phang et al.,
2018; Aribandi et al., 2022), exploiting the syner-
gies across tasks. Intermediate training on NLP
datasets has benefits both for performance and effi-
ciency (retraining on tasks is cheaper compared to
training a full language model).

One important desideratum in finding the right
language model for a downstream task is the train-
ing data and its distance to the target data. For
an intermediate training step on NLP datasets this
is even more complex, as there are more design
decisions to make; e.g.: which NLP tasks are relev-
ant for the target task? Which datasets are closest
to the target data? How many (or how much) of
them do we use? Which LLM to use as a start-
ing point? Previous work has investigated mostly
single dimensions in this choice of intermediate
training datasets (in a carefully curated setup), less
is known about what to do if one has a more varied
set of NLP tasks.

In this paper, we use all text-based tasks of Sem-
Eval 2023 (tasks 2-12) as a seemingly arbitrary set
of NLP tasks for evaluating the effect of intermedi-
ate training. More concretely, we seek to answer:

• Is the selection of the target or the source task
more important for successful transfer?

• How does training on a combination of tasks
compare to intermediate training on single
tasks?

• Are dataset smoothing or heterogeneous
batches beneficial for intermediate training?

• Which properties of datasets and/or tasks are
good predictors for performance gains for
transfer learning?

We test all of these under a setting of highly var-
ied datasets, in different languages, with different
tasks, different task types (single labels, sequences,
etc.), different training sizes, and predictions over
different input lengths (word, sentence, document).
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2 Intermediate Training

An intermediate step of language model training
has shown to be beneficial to adapt a language
model to a new domain, like social media or bio-
medical data (Gururangan et al., 2020; Barbieri
et al., 2022) as well as to new languages (Muller
et al., 2021; Chau and Smith, 2021). Here, the
intuition is to repurpose the knowledge of previ-
ously trained models, and specialize them towards
the target domain and/or language by doing further
finetuning on a language modeling objective.

Phang et al. (2018) showed that an intermediate
training step on an NLP tasks can also be beneficial
for performance of LLM’s on the GLUE datasets,
which are all on the sentence level. Follow-up
work attempted to identify how datasets can be se-
lected for the intermediate training step. Wang
et al. (2019) find that language modeling is hard
to beat as intermediate task, and that multitask pre-
training outperforms single-task pre-training. They
also included sequence-to-sequence tasks, and con-
clude that these are too distant to be beneficial for
classification tasks. Correlations on performance
of dataset pairs are low showing that it is hard to
predict which datasets are beneficial. This is con-
firmed by the findings of Chang and Lu (2021),
who conclude that task complexity is not a good
predictor for being a good transfer dataset, whereas
Pruksachatkun et al. (2020) find the opposite (com-
plex tasks are good to transfer from), although they
do conclude that future work is necessary.

Weller et al. (2022) compare intermediate train-
ing versus joint training on sentence-level tasks,
concluding that for small datasets, joint training
is more beneficial, and for larger datasets interme-
diate training should be used. Poth et al. (2021)
evaluate a variety of (supervised) approaches to
automatically identify which source datasets are
beneficial, and conclude that pre-computable sen-
tence representations are efficient for this task, and
confirm that within task-type transfer outperforms
cross-task-type transfer which is in line with the
findings of Padmakumar et al. (2022) who compare
transfer across and within task types.

Instead of selecting tasks, recent work has at-
tempted to train on a wide variety of tasks. This
is commonly done in the space of generative lan-
guage models, where training on a variety of tasks
is easier because many NLP tasks can be con-
verted to generation tasks, and can then directly
be used to (re-)train an autoregressive language

SemEval2 SemEval3 SemEval4 ... SemEval10 SemEval11 SemEval12

Single (11)

Single (12)

Multi-task

Retrain-all (12) Retrain-single (12)

Figure 1: Overview of the setup with all models
evaluated on task 12. Models are depicted by ,
and the target task is shown in brackets. Note that
the multi-task model can output all SemEval tasks,
and single (11) is included to better visualize
retrain-single (12).

model (Aribandi et al., 2022; Sanh et al., 2022;
Chung et al., 2022). In this setup it is easier to ex-
ploit a large variety of task types and a much higher
amount of datasets (~50-1,800 datasets) is used
compared to previous work. However, autoregress-
ive language models still lag behind in perform-
ance compared to autoencoder language models
for many tasks. Work that focused on intermedi-
ate training for encoder models and a large variety
of task types is mainly done in the biomedical do-
main (Parmar et al., 2022; Fries et al., 2022).

Compared to previous work on autoencoder
models, we have a larger variety of tasks as well
as languages. Our selection of datasets is some-
what arbitrary (all SemEval 2023 tasks), leading
to a more challenging setup for multi-task learn-
ing compared to previous work who usually used
a carefully curated set of datasets (with often 1
language and/or task type). The most similar to
our setup is van der Goot (2022), as they also use
an arbitrary set of tasks (all SemEval 2022 text-
based tasks) and also compare joint training with
intermediate training on the full collection of the
data. However, their results show no clear trend
on when one approach outperforms the other. We
build on this work by considering also single-task
intermediate training, and systematically analyzing
the differences in performance based on properties
of the datasets. Furthermore, we evaluate the effect
of diverse batching and dataset smoothing.

3 Setup

We first find the best strategy within each data-
set (Section 4); we refer to these models as
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2. [johann adam birkenstock]Artist in 1774 founded [birkenstock]PrivateCorp shoe company
3-1. Watch: Campus Commie Has Profanity-Laden Hissy Fit, Pours Beverage on FSU Republicans ... 7→ opinion
3-2. Illegal alien wanted for attempted murder in NC arrested at US-Mexico border ... 7→ Crime_and_punishment|Security_and_defense
3-3 Online Sociology Course Founders Over Whether Australia is a Country ... 7→ Conversation_Killer|Doubt
4 We should ban whaling | against | whaling is quite a profitable profession. 7→ Achievement|Power: resources
5-1 This dude reckons you can lose weight on a diet of pies and beer 7→ passage
5-2 A simple way to fight clickbait: | ... Don’t like clickbait? [Don’t click]spoiler
6-1 [DATE: MARCH 15,]preamble [ORAL]preamble [(Per Akil Kureshi, J.)]none [The petitioner has challenged an order dated ...]fac
6-2 [Section 46,]provision [Provincial Insolvency Act,]statute and [section 47,]provision [Presidency Towns Insolvency ACT,]statute deal with ...
6-3 ... words and who has retired on or after the 1st day of October, 1974 are unconstitutional and are struck down. ... 7→ denied
7-1 Patients in NCT02953860 receive less mg of Enzalutamide than Fulvestrant on a weekly basis. 7→ Contradiction
7-2 More than 1/3 of patients in cohort 1 of the primary trial experienced an adverse event. | Adverse Events 1: [Total: 69/258 (26.74%)]evidence ...
8-1 [Colchicine toxicity?]question [Death?]question [Very scared]per_exp ...
8-2 ... [SLE]population, and/or [MCTD.]population I have had horrible [body aches,]outcome [swelling]outcome and [fatigue]outcome almost daily
9 @user Ohhhh, Google is struggling to translate it 7→ 1.4
10-1 U sure ? Id personally never trust a girl from pluto 7→ not sexist
10-2 The absolute state of women gentlemen 7→ 2. derogation
10-3 Thank you for all the women who are still sensible. 7→ 3.3 backhanded gendered compliments
11-1 BRITISH REFUGEES WELCOME #Brexit 7→ 0.0
11-2 �

HA�J
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�
®K
 ú




�
¯AK.

	á�
Ó 7→ 0.67

11-3 prev_agent": "You are sure?", "prev_user": "omg yes", "agent": "You are sure?", "user": "foolish" 7→ 0.25
11-4 life sucks when you’re dishonest 7→ 0.4
11-4 Why is Nevada only 67% of votes counted .... bloody slow pokes! #Elections2020 7→ 0.2
12 e dey always taste like paper and e no dey get oil 7→ negative

Table 1: Example input and annotation for each task. The ellipsis indicate that the utterance continues. 7→ separates
input and output. The vertical bar (|) is used to separate multiple inputs or outputs. Spans are represented with
square brackets and the label in subscript.

Name Subtasks Languages Size

2. MultiCoNER II NER BN, DE, EN, ES, FA, FR,
HI, IT, PT, SV, UK, ZH

2,672,490

3. News persuasion 1. News categorization EN, FR, GE, IT, PO, RU 741,561
2. Framing classification EN, FR, GE, IT, PO, RU 725,740
3. Persuasion technique classification EN, FR, GE, IT, PO, RU 19,561,550

4. ValueEval Human value classification EN 116,294
5. Clickbait spoiling 1. Spoiler type classification EN 34,520

2. Spoiler detection EN 1,647,176
6. LegalEval 1. Rhetorical role detection EN 755,280

2. NER EN 369,205
3. Legal judgement prediction EN 5,082

7. Clinical NLI 1. Entailment EN 21,828
2. Evidence retrieval EN 311,687

8. Medical claims 1. Claim identification EN 549,231
2. PIO frame extraction EN 78,864

9. Tweet intimicay Intimacy Analysis EN, ES, IT, PO, FR, ZH 73,698
10. Explainable sexism 1. Sexism detection EN 262,939

2. Sexism classification EN 68,043
3. Fine-grained sexism classification EN 68,043

11. Le-Wi-Di 1. Hate speech detection∗ EN 14,252
2. Misogyny detection∗ AR 12,788
3. Abuse detection∗ EN 64,738
4. Offensiveness detection∗ EN 145,245

12. AfriSenti-SemEval Sentiment classification AM, DZ, HA, IG, KR,
MA, PCM, PT, SW, TS,
TWI, YO

795,449

Table 2: Overview of tasks and their data. Data size is
here represented as number of words in (the labeled part
of the) training data as counted with wc (whitespace-
based). Names of tasks are shortened to fit in the table,
subsection titles of Section 4 include the full names of
the tasks. ∗for task 11, soft labels need to be predicted
(which are the average over 5 annotators).

single. Then we use these best settings of
each task to train a single multi-task model cov-
ering all tasks (multi-task). We re-train this
multi-task model on each target task separately
(retrain-all), which is the intermediate train-
ing setup described in Section 2. We compare this
to a setup where we re-train from single task mod-
els (retrain-single), where we focus mostly
on the best source transfer task. A schematic over-

view of the setup is shown in Figure 1.
For the multi-task models, we evaluate the effect

of dataset smoothing, where we use multinomial
smoothing with a factor of 0.5. We also experi-
ment with task-diverse batches (i.e. heterogeneous
batching: multiple tasks/datasets in a single batch),
which has previously shown to be beneficial for in-
termediate training of generative models (Aghajan-
yan et al., 2021).

We use MaChAmp (van der Goot,
2022) v0.4 with default hyperpara-
meters for all experiments, with the
bert-base-multilingual-cased lan-
guage model for efficiency reasons. For our final
test submissions, we compare 7 language models
on the best strategy for each task. We used a
pre-selection of multilingual language models
based on previous empirical results achieved by
MaChAmp.2. The list of language models and
their results can be found in Appendix C.

4 Data and Baselines

For each task, we describe an overview of the task,
the baseline approaches we evaluated, and the res-
ults. An annotated example for each task can be
found in Table 1, and an overview with dataset
statistics in Table 2. We followed the officially re-
commended metrics for each (sub)task; we used

2https://robvanderg.github.io/blog/
tune_lms.htm
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Lang SL-bio SL-seq ML-bio-
shared

ML-bio-
sep

ML-seq-
shared

ML-seq-
sep

bn 77.07 75.95 81.03 79.50 76.99 79.07
de 69.03 67.09 75.87 74.17 74.28 73.05
en 67.13 65.18 71.80 71.40 69.95 70.54
es 71.08 69.70 77.08 76.05 75.06 75.54
fa 65.57 62.09 66.88 64.82 63.57 63.58
fr 71.58 69.60 76.13 74.90 74.56 74.30
hi 78.34 76.42 78.11 79.97 77.35 78.10
it 77.81 75.25 81.95 81.23 80.89 80.18
pt 72.37 68.21 76.44 76.57 72.78 72.44
sv 73.13 72.39 77.96 79.29 76.44 77.89
uk 70.96 70.04 72.54 71.37 72.74 72.42
zh 73.15 70.51 76.61 76.84 69.33 71.37

Avg. 72.27 70.20 76.03 75.51 73.66 74.04

Table 3: Results task2 (Span-F1 from
conlleval.pl)

the internal implementation of these metrics in
MaChAmp for model selection when available. We
use the Scikit-Learn implementation for f1 scores
and conlleval.pl for spans for the scores re-
ported in this paper. For tasks without publicly
available dev data (3,7,8,9,10, and 12), we use 80%
for train and 20% for dev. Task 6 is described in
Appendix B, as we did not manage to officially
participate.

4.1 Task 2: Multilingual Complex Named
Entity Recognition (MultiCoNER 2)

Task 2 concerns multilingual named entity recog-
nition. The data is characterized by its large size
and the fact that the entity labels are fine-grained;
in total 35 labels are used. The data is taken from
Wikipedia, questions from the MS-MARCO QnA
corpus (Nguyen et al., 2016), and search queries
from ORCAS (Craswell et al., 2020), and is labeled
using weak supervision (Malmasi et al., 2022).

In the basic setup, we use a simple feedforward
layer on top of the encoder for word-level classifica-
tion of the BIO labels (seq), we also experimented
with a CRF layer that enforces valid BIO-sequences
(bio). We further experimented with single lan-
guage models (SL) and multilingual models (ML).
In the multilingual setup, we distinguish between a
model that shares the decoder across all languages
(shared), and a model that trains a separate de-
coder for each language (sep).

Results (Table 3) show that the CRF layer is
beneficial in all settings. Furthermore, sharing as
many parameters as possible is beneficial; the mul-
tilingual model with separate decoder outperforms
the mono-lingual baselines, but the highest scores
are obtained when also sharing the decoder.

4.2 Task3: Detecting the genre, the framing,
and the persuasion techniques in online
news in a multilingual setup

Task 3 includes three classification tasks on news
articles (Piskorski et al., 2023). The inputs are re-
latively long (734-1210 words per article), which
poses problems for current language models. The
first subtask is genre classification, in which each
article is classified as opinion, reporting, or satire.
The second subtask is framing classification, which
is a multi-label classification problem with 14 la-
bels. The third subtask is framing technique clas-
sification, which is also multi-label, and has 23
labels. For the third subtask, there are also in-
stances without any label, whereas for the second
task, each instance has at least one label.

For the first subtask, we use a single feedforward
layer to obtain predictions and use a cross-entropy
loss. We experiment with single- (SL) and multilin-
gual (ML) models, and for the multilingual models
evaluate a shared decoder (shared), and separate
language decoders (sep). For subtasks 2 and 3, we
evaluate the same setups, and attempt to model the
task in three different ways: first, we consider the
multi-labels as if they are one label by concatenat-
ing them (clas). Secondly, we attempt to model
them as separate tasks (sep_clas). Third, we use
a multi-label setup (multi_clas) in which we
use a BCE loss with a Sigmoid layer and manually
set the threshold above which probability we output
a label. For the classification tasks, only the first
128 subwords are used due to memory restrictions.

Table 13 (Appendix A) shows that the multilin-
gual classification models perform well for sub-
tasks 1 and 2. Results on subtask 3 are less stable,
and multi-clas does better here after finding the op-
timal threshold. Sharing the decoder is beneficial
for subtasks 1 and 3.

4.3 Task 4: ValueEval: Identification of
Human Values behind Arguments

Task 4 (Kiesel et al., 2023) is a classification task
for arguments; they are to be classified in one or
multiple of 20 human values, which are described
in Kiesel et al. (2022). The input consists of a
conclusion, the premise’s stance towards the con-
clusion, and the premise itself. We include all three
texts with a special SEP token as divider and give
the subwords in the stance segment ID’s (Devlin
et al., 2019) of 1.

Because this task is a multi-label classification
problem, we compare three approaches: 1) con-
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Figure 2: Results of task 4 (F1): separate classifiers
(sep), a joint classifier (all), and a multi-clas classifier
with a threshold (multiclas).

sider the combination of classes as one label
(clas) 2) train 20 separate (binary) decoders,
one for each label (sep_clas) 3) train a multi-
head classifier, which uses a BCE loss with a Sig-
moid layer and then outputs all labels above a cer-
tain threshold (multi_clas. We also evaluated
whether concatenating the data from the Zhihu data-
set (Kiesel et al., 2022) to the training data was be-
neficial, but saw lower scores across all approaches.

Results in Figure 2 show that training separate
classifiers for each label is not beneficial, simply
concatenating labels leads to higher performance.
However, training a multi-head classifier and tun-
ing the threshold leads to superior performance,
where tuning the threshold is crucial.

4.4 Task 5: Clickbait Spoiling
Task 5 concerns the classification (subtask 1) and
spoiler detection (subtask 2) for clickbait posts and
their corresponding full text. A clickbait post is a
short text that is intended to inappropriately entice
readers to visit a web page. The data was taken
from Facebook, Reddit and Twitter (Fröbe et al.,
2023; Hagen et al., 2022). For subtask 1, three
types of spoilers are classified; phrase, multi, and
passage. These labels refer to the type of extraction
that is needed to find the spoilers, phrase means
that the spoiler is just a short phrase, passage refers
to spoilers consisting of subsequent phrases, and
multi to more complex spoilers (combination of
phrases throughout the document). Subtask two
concerns the extraction of spoilers in the text from
the web page, this is done by locating a (series of)
span(s).

For subtask 1, we identify which pieces of in-
formation from the dataset are useful for the target
labels. We include the text of the post, the descrip-
tion, title text, keywords, links of media, and URL
of the webpage. We tried each of these inputs in
isolation and found that all of them beat the major-

5-1
Information F1

Post text 66.92
Page description 47.73
Page title 59.12
Page text 47.85
Page keywords 43.26
media 38.04
url 51.08

all 67.24
all-media 66.40

5-2 Span-F1

seq 15.37
bio 17.21

Table 4: Results for task 5, subtask 1 (Macro F1) and
subtask 2 (span-f1)

ity baseline, so our final model includes all inputs.
For subtask 2, we convert the character offsets of
the spans to BIO labels on the word level and evalu-
ate a sequence labeler with and without CRF layer.
Note that this does not take the clickbait post into
account, and is thus a non-realistic setup.

Results show that the original clickbait text (Post
text) is the most predictive source of information
in isolation. However, each of the used informa-
tion categories outperform the majority baseline
(19.68). Because of these positive results, we also
train a model with all categories, which slightly
outperforms using only the post text. After ablat-
ing the least informative category (media) from the
“all” model, we observe a performance drop and
decided to stick with the full combined model. For
subtask 2, the CRF layer with BIO constraints is
superior once again.

4.5 Task 7: Multi-Evidence Natural Language
Inference for Clinical Trial Data

Task 7 consists of data from clinical trial reports for
breast cancer studies (Jullien et al., 2023). The first
subtask is to distinguish entailment from contradic-
tion based on a clinical trial report and a statement.
The second subtask is to extract the spans of the
supporting facts to justify the output of subtask 1.
The facts are sentences, and the sentence boundar-
ies are given.

We implement the first task as classification task.
We tried to predict based on the statement, and addi-
tionally experiment with adding the section and/or
the text. The second subtask we also implemen-
ted as a classification task, we include pairs of the
statement and 1 sentence from the trial report at a
time, with a binary label (relevant or not).

For subtask 1 The majority baseline would score
33.33 F1, so by just using the statement we can
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7-1 7-2

Classification 59.98 classification 68.21
+section 62.22
+text 56.58
+comb 52.94

Table 5: Macro-f1 scores for subtask of task 7

subtask seq bio

8-1 23.58 32.91
8-2 28.47 28.48

Table 6: Span-F1 scores for task 8.

already obtain a substantially higher performance
(Table 5). For subtask 2, the majority baseline
would score 52.21, so the classification per sen-
tence pair is effective.

4.6 Task 8: Causal medical claim
identification and related PICO frame
extraction from social media posts

Task 8 (Khetan et al., 2023) is based on medical
data from Reddit (Wadhwa et al., 2023). The first
subtask is to identify spans that represent claims,
experiences, experience-based claims, or questions.
The second subtask is to find spans that identify
the population, intervention, or outcome frame of a
claim. It should be noted that the spans of the first
task are much longer (average of 23 words) com-
pared to the spans of the second subtask (average
of 2 words). The text for task 8 was not released,
but a scraping script was provided. We scraped the
data on 07-11-2023, and after aligning the annota-
tions we noticed that some posts were deleted or
edited. For subtask 1, we removed 767 of the 5695
posts, and for subtask 2, 72 out of 597.

The results (Table 6) show a clear trend; for
the longer spans of subtask 1, the sequence label
approach with a feedforward layer is ineffective,

Language SL ML-shared ML-sep

Chinese 62.88 65.22 64.12
English 71.37 71.26 69.96
French 54.63 53.47 56.18
Italian 54.13 59.37 59.25
Portuguese 60.07 61.46 60.28
Spanish 64.48 66.97 64.10

Avg. 61.26 62.96 62.32

Table 7: Pearson r scores for task 9 per language and av-
erage over languages. SL=Single Language, ML=Multi-
Lingual.

subtask ST MT

10-1 80.68 78.96
10-2 52.09 55.57
10-3 36.28 35.16

Table 8: Macro-F1 scores for subtasks of task 10

and much can be gained with a CRF layer. On the
contrary, for the second subtask, the difference is
negligible, probably due to the short length (and
thus easier boundary detection) of the spans.

4.7 Task 9: Multilingual Tweet Intimacy
Analysis

The task is to identify intimacy on tweets on a
scale of 1-5. More details about the data collection
can be found in Pei and Jurgens (2020) and Pei
et al. (2022). Besides the six languages available
in training (Table 7), Hindi, Arabic, Dutch, and
Korean are test-only languages.

We implement the task as a regression task in
the MaChAmp toolkit, which uses an MSE loss.
We compare mono-lingual models against multi-
lingual models and evaluate the use of a shared
decoder and language-specific decoders. We use
the average (absolute) distance between the gold
and predicted label for model selection (because
it is the only regression metric currently available
in MaChAMp), and report Pearson r following the
official metric.

Results (Table 7) show that each of the model
varieties performs best for some of the languages.
The highest average is obtained by the multilingual
model with a shared decoder, however, it performs
bad on French. A manual inspection revealed that
this difference is mostly due to bad performance
on short sentences.

4.8 Task 10: Towards Explainable Detection
of Online Sexism

This task concerns the detection and classification
of sexism against women on social media data from
Gab and Reddit (Kirk et al., 2023a,b). The task is
divided into three subtasks: 1) binary classifica-
tion (sexist or not), 2) only for sexist posts: in
which category does it belong: threats, derogation,
animosity, or prejudiced discussions. 3) which sub-
category does the post belong to, there are two or
three subcategories per main category from subtask
2.

We implement each of these tasks as a classific-
ation task and compare it to a model that includes
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11 Multi-sep-
clas

Multi-sep-
reg

Multi-
shared-clas

Multi-
shared-reg

Single-clas Single-reg

ArMIS 180.51 42.85 45.32 64.93 108.49 30.14
ConvAbuse 45.44 19.10 30.77 10.78 37.01 12.26
HS-Brexit 10.65 21.48 22.20 9.93 3.26 8.52
MD-Agreement 30.80 25.23 35.16 19.54 41.79 20.43

Avg. 66.85 27.17 33.36 26.29 47.64 17.84

Table 9: Results (cross-entropy) of task11.

lang SL ML-shared ML-sep

am 1.40 0.39 0.17
dz 4.51 13.88 14.25
ha 28.62 27.66 28.03
ig 28.02 25.96 26.77
kr 20.23 11.99 16.53
ma 74.81 73.73 72.05
pcm 36.57 21.77 19.27
pt 9.43 10.06 10.61
sw 9.34 10.02 13.16
ts 29.40 20.99 26.91
twi 30.59 20.66 23.44
yo 27.63 27.03 26.24

Avg. 25.05 22.01 23.12

Table 10: Macro-F1 scores for task 12

all three tasks simultaneously. We use macro-f1 for
all tasks, following the official metrics (although
task 1 is a binary task).

Results (Table 8) show that the multi-task model
is only beneficial for the coarse categories classi-
fication (subtask 2). This might be due to this task
being in between both other tasks, and thus more
closely related to the others. It should be noted
that across the tasks there is no error propagation,
as subtask 2 is only evaluated on sexists posts and
subtasks 2 and 3 are implemented as separate tasks.

4.9 Task 11: Learning with Disagreements
(Le-Wi-Di)

Task 11 contains a variety of 4 NLP tasks (Leonar-
dellli et al., 2023): misogyny detection on Arabic
tweets (ArMIS), abuse detection in dialogues (Con-
vAbuse), hate speech detection on data concerning
the Brexit (HS-Brexit) and offensiveness detection
on tweets from 5 different topics (MD-Agreement).
All of these tasks contain soft labels, which are the
average scores over multiple annotators (i.e. a float
between 0.0 and 1.0). The official evaluation metric
is cross-entropy, but we use MaChAmp’s default
metrics for each task-type for model selection.

We predict the label as a regression task as well
as a classification task, as the number of annotators
is between 4 and 10, and the number of labels is

relatively small. Furthermore, we evaluate using a
multi-dataset model with a shared encoder as well
as separate decoders for each task.

Results (Table 9) show that the regression task
type performs better for this task. Single-dataset
models outperform the multi-dataset setup, prob-
ably because the tasks are too diverse.

4.10 Task 12: AfriSenti-SemEval: Sentiment
Analysis for Low-resource African
Languages using Twitter Dataset

Officially there are three sub-tasks, but they all con-
cern the same task, they merely differ in the setup.
The task is binary sentiment analysis (Muhammad
et al., 2023a); the first subtask is for mono-lingual
models, the second for multilingual models and
the third is for transferring to new unseen lan-
guages (Muhammad et al., 2023b). We consider all
of these settings and use the best models from the
multilingual setting for the cross-lingual setup.

We compare single language models to multilin-
gual models, where we test with shared decoder-
heads heads and separate decoder-heads. Table 10
shows that the single-task models perform best on
average. Although, for challenging languages (SL
< 10.0) multilingual learning is beneficial.

5 Results

The scores on the development data for all our
setups (Figure 3) show that the single-task interme-
diate training is most successful (highest for 12/21).
It should be noted, however, that we only plot the
best single transfer task, which does need to be
found first. The multi-task setup only performs
best for one task (8-1), this is because it is the only
model that has to share parameters in the model
that is used for prediction. For most tasks, the gains
obtained with intermediate training are substantial,
but there are five cases where the single model per-
forms best; two of these are the soft labels of task
11.

Results on the test data (Table 11) show that al-
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Figure 3: Absolute performance (official metrics) of four settings; the single dataset models, the multi-task models
that are trained on all tasks, and the retrained models that are trained on a single (we show the best one only), or on
all tasks. For task 11 we use 1/cross_entropy, so higher is better for all tasks.

Task Score Rank Task Score Rank

2 73.74 8/18 8-1 78.40 1/7
3-1 31.67 8-2 40.55 1/6
3-2 38.01 9 57.47 18/46
3-3 29.36 10-1 81.92 53/84
4-1 48 15/42 10-2 62.82 28/69
4-2 34 3/20 10-3 8.04 62/63
4-2 19 10/12 11-1 0.69 15/27
5 65.3 17/25 11-2 1.11 20/27
6 — 11-3 0.47 18/27
7-1 — 11-4 0.61 12/27
7-2 75.6 14/19 12 2.26-51.17

Table 11: Scores and ranking on test data, official met-
rics are used. — indicates failed submissions.

though we rank high for 3 tasks (4-2, 8-1, and 8-2),
for most tasks, we rank somewhere in the middle.
This was expected, as we do almost no tuning
per task, no ensembling, use no domain/language-
specific embeddings and do not use any non-
SemEval data nor data augmentation.

6 Analysis

We plot the difference of each retraining setup to
the single task baseline in Figure 4; positive num-
bers mean the baseline was outperformed. Res-
ults show that multi-task learning and intermediate
training leads to performance loss more often than
performance gains in our setup, which is probably
a result of having large training sets and good per-
forming baselines. In general, some datasets are
particularly good at being on the receiving end of
transfer, whereas there is no clear dataset to trans-
fer from (rows are more consistently colored than
columns). Tasks that particularly benefit from inter-
mediate training are tasks 6-3, 10, 11-1, and 11-2.
For task 6-3, we have a very low baseline, and res-
ults seem unstable, task 10 gains from almost all

single task transfers, but mostly from itself (note
that we just train twice on the same data here).

The performance of the models trained on all
datasets is not more robust compared to the single-
task source models, although scaling up further
might change this effect (Aribandi et al., 2022).
Diverse batching as well as dataset smoothing only
lead to performance improvements in specific cases
in our setup. We do not find improvements similar
to Aghajanyan et al. (2021) for diverse batching,
which is probably either because they use the same
decoder for all tasks (in a generative model), or
because of the scale of datasets.

To evaluate which properties are important for
dataset selection in multi-task learning we perform
a correlation study. We use the single dataset trans-
fer results (differences to baseline on dev, i.e. first
21 columns of Figure 4) as target variable, and
evaluate the correlation against a variety of prop-
erties of the tasks. Results (Table 12) show that
the strongest (negative) correlations are found for
the dataset size variables. For source datasets, we
hypothesize that this is because the model over-
fits towards large datasets, which impedes transfer.
For target datasets, this is because the model is
undertrained, and there is more space for improve-
ment. Perhaps surprisingly, baseline scores are
much less informative compared to dataset size,
although baseline scores are expected to correlate
with baseline performance. However, it should be
noted that different metrics are used, making the
correlation less reliable. The number of tasks and
number of languages are both negatively related
to performance, as there is already sharing going
on in the baseline setting, adding even more variet-
ies of data is not beneficial. Perhaps surprisingly,
task type overlap is also negative, however, this is
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Figure 4: Difference in metric with intermediate training and multi-task learning versus baseline. The target datasets
are on the y-axis, the source on the x-axis. Note the the intermediate step can be 1 dataset or all. The last 4 columns
represent the multi-task models that are not retrained. Note that the color gradient start at 0 to 30, as we focus on
gains. Also note that each row has its own metric, and for the task11 subtasks we use (1/cross_entropy) *100.

Feature Description Pearson

src_base Baseline performance of src task 0.009
tgt_base Baseline performance of tgt task -0.109
base_ratio src_base/tgt_base 0.093
type_overlap Overlap in task types -0.116
num_src_langs Number of languages in src data -0.079
num_tgt_langs Number of languages in tgt data -0.111
lang_overlap Overlap in number of languages 0.022
dom_overlap Whether domains match (binary) 0.088
src_size # words in src data -0.500
tgt_size # words in tgt data -0.562
size_ratio src_size/tgt_size -0.133

Table 12: Pearson correlations between properties of
transfer settings and the difference in performance with
respect to the baseline.

highly dependent on the choice of datasets, and the
task types are imbalanced in our sample.

To gauge the effect of simply upscaling the num-
ber of datasets, we also trained models on the com-
bination of the data in Section 4 and the SemEval
2022 datasets used by van der Goot (2022). This
leads to approximately twice as large training data,
but no robust gains in performance; for some tasks

the combined data increases performance for others
it does not (results in Appendix D). Although the
scale of data does not match recent studies in the
space of generative language models (Chung et al.,
2022), our results do suggest that scaling up might
not be the most prominent direction for obtaining
robust multi-task autoencoder models.

7 Conclusion

We evaluate the effect of multi-task learning and
intermediate training on all text-based SemEval
2023 tasks and showed that for a non-curated set
of benchmarks it is hard to obtain consistent im-
provements. We found that specific target tasks
are likely to gain from intermediate training, but
finding the right source dataset/task is non-trivial.
Training on a wide variety of tasks has shown to
not be more robust compared to finding the best
source task to transfer from. In contrast to previous
work, having task-heterogeneous batches did not
lead to consistent performance gains in our setup.
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A Task 3: Results

Due to space constraints, results on task 3 can be
found here (Table 13).

B Task 6: LegalEval: Understanding
Legal Texts

Task 6 has three subtasks, and consists of legal
texts. The first subtask is to identify the rhetorical
roles in a text, these can be extracted as spans,
and we model them as BIO-labels on the word
level. It should be noted that the labels are roughly
assigned on the sentence level, meaning that the
spans with the same label are often subsequent
(i.e. a paragraph that is an analysis, can be 5
sentences long, and consist of 5 spans), however,
finding the boundaries is also part of the task. We
included the None label, because it is also included
in the evaluation (and data) as a class. The second
subtask is named entity recognition, containing 13
different types of entities. For this subtask, two
different types of texts are used: preambles and
judgements. The third task concerns predicting the
outcome of a legal judgement document (binary:
accept or reject), and providing the relevant text
spans in the document that explain this outcome.

For subtask 1, we compare the use of a standard
sequence labeling to an approach with a CRF layer.
For the second subtask, we compare the same types
of models, but also use different strategies to handle
the multi-dataset setting. We train models on the
separate datasets, and attempt to combine them
within single decoder, as well as a setup where
each dataset has its own decoder. For the third
subtask, we could not identify the annotation of the
relevant text spans in the provided data, so we only
predict outcome as a binary classification.

For subtask 1, it is clear that the CRF layer with
BIO constrants is beneficial (Table 14). For sub-
task 2, the single dataset models perform best and
surprisingly, the CRF layer is not beneficial for one
of the datasets, leading to a lower average com-
pared to using a simple feedforward layer. For
subtask 3, our performance matches the majority
vote baseline, this is because the model predicts
every case as being rejected. We find two possible
reasons for this: 1) the dev data is balanced, but the
training data has more rejected cases. 2) the input
texts are long (average of 4012 words), and only
the first 128 subwords are taken into account in the
default settings of MaChAmp (to save memory).
We leave a more detailed analysis for future work.

C Language models comparison

In table 15 we compare the performance of a variety
of language models for the best single task settings.
For our final test split submissions, we used the
best setting of Figure 4, and retrained it with the
best language model for each dataset.

D Training on SemEval 2022 and 2023
data

We use the best settings of van der Goot (2022)
for the 2022 data, and train the multi-task model
on the combination of all 2022 and 2023 datasets.
We plot the best setting (smoothing/heterogeneous
batching) for each setup in Figure 5.
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3-1 MT-clas-
shared

MT-clas-
sep

ST-clas

it 60.56 37.96 35.12
en 41.85 30.42 35.34
ru 53.08 51.05 43.96
po 65.50 42.67 56.94
fr 65.87 56.24 60.87
ge 78.57 79.41 63.99

Avg. 60.91 49.62 49.37
3-2 ST-clas ST-

multiclas
ST-
sep_clas

MT-clas-
shared

MT-clas-
sep

MT-multi clas-
shared

MT-multi
clas-sep

MT-sep_ clas-
shared

MT-sep_
clas-sep

it 28.96 47.01 26.57 34.21 39.62 32.11 36.36 27.51 37.65
en 57.45 65.24 39.93 57.09 61.06 39.12 39.82 40.34 39.80
ru 18.18 26.53 14.29 34.48 37.59 29.30 32.77 19.05 21.74
po 18.43 47.74 38.35 47.11 42.31 43.12 47.44 35.34 47.52
fr 24.83 41.61 22.86 36.60 40.22 22.70 32.48 19.89 25.40
ge 48.57 43.75 31.22 33.33 36.16 26.61 38.86 28.28 24.11

Avg. 32.74 45.31 28.87 40.47 42.83 32.16 37.96 28.40 32.70
3-3

it 0.00 0.00 19.11 0.00 0.00 37.16 28.10 16.74 13.67
en 0.00 0.00 0.00 0.00 0.00 23.22 19.45 0.00 0.35
ru 3.12 5.47 16.89 0.00 0.00 34.84 25.36 13.54 10.31
po 8.92 2.09 7.58 0.00 0.00 22.01 17.46 6.34 5.61
fr 0.00 7.99 12.55 0.00 0.00 30.27 28.63 16.52 14.27
ge 27.67 23.77 21.61 0.00 0.00 33.74 24.04 17.29 17.81

Avg. 6.62 6.55 12.96 0.00 0.00 30.21 23.84 11.74 10.34

Table 13: Macro F1 for subtask 3-1, and micro F1 for subtasks 3-2 and 3-3
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Figure 5: Performance on all tasks when trainin on the SemEval 2023 data only versus training on the combination
of 2022 and 2023. Note that performance on task3_3 is missing due to an error in our scripts; since training the
model was computationally expensive we did not redo it.
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6-1 seq bio
37.50 49.20

6-2
ST-seq ST-bio MT-

shared-seq
MT-
sep-seq

MT-
shared-bio

MT-
sep-bio

Judgement 80.55 82.17 80.44 78.72 80.61 81.02
Preamble 72.23 68.11 71.28 71.22 66.03 67.74

Avg. 76.39 75.14 75.86 74.97 73.32 74.38

6-3 33.00

Table 14: Results task 6. Span-F1 for subtask 1 and 2,
and macro F1 for subtask 3.
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bert-base-
multilingual-
cased

mdeberta-
v3-base

mluke-
large

mluke-
large-lite

xlm-
roberta-
large

infoxlm-
large

mbart-
large-50

task2_1_seq-bio_shared 76.03 70.62 72.44 73.28 79.13 79.24 74.58
task3_1_classification_shared 56.56 58.26 27.49 27.49 27.49 27.49 43.64
task3_2_multi-clas_it∗ 40.79 0.00 0.00 0.00 0.00 0.00 47.66
task3_2_multi-clas_ru∗ 47.01 0.00 0.00 0.00 29.36 0.00 41.44
task3_2_multi-clas_fr∗ 51.16 47.55 36.50 36.50 10.17 0.00 32.35
task3_2_multi-clas_ge∗ 46.03 0.00 0.00 0.00 14.49 0.00 0.00
task3_2_multi-clas_en∗ 67.96 66.76 64.27 65.84 42.02 42.02 64.26
task3_2_multi-clas_po∗ 58.04 0.00 0.00 0.00 10.42 0.00 0.00
task3_3_classification_shared 42.26 0.00 0.00 0.00 0.00 0.00 0.00
task4_1_multiclas_comb 31.47 43.84 48.40 47.90 48.31 15.11 42.05
task5_1_classification_1234567 66.80 70.97 36.31 38.74 48.23 31.71 59.32
task5_2_seq-bio_base 15.53 19.74 20.49 20.29 10.28 2.69 20.81
task6_1_seq-bio_mono 49.23 51.03 54.46 55.90 54.54 55.52 52.94
task6_2_seq_NER-TRAIN-JUDGEMENT 80.79 85.00 84.96 86.06 85.66 86.04 83.73
task6_2_seq_NER-TRAIN-PREAMBLE 72.13 87.09 88.78 89.08 88.91 88.04 85.89
task6_3_classification_mono 33.71 34.00 33.79 51.42 44.84 33.27 57.06
task7_1_classification_section 61.82 61.18 58.85 61.58 54.81 50.36 59.36
task7_2_classification_base 75.62 62.59 77.96 66.05 61.85 74.92 69.51
task8_1_seq-bio_base 34.92 36.02 36.12 35.93 36.97 36.65 35.41
task8_2_seq-bio_base 25.90 29.38 28.94 28.62 28.84 24.91 23.62
task9_1_regression_shared 63.06 67.25 70.15 69.15 68.30 67.90 66.05
task10_123_classification_multi 57.74 60.98 62.07 63.85 65.67 56.91 56.76
task11_0_regression_0 21.40 21.66 18.68 22.90 27.66 24.11 20.72
task11_1_regression_0 14.20 23.52 2.21 5.50 7.44 1.94 10.75
task11_2_classification_0 17.83 4.12 6.96 5.82 -0.00 7.28 3.86
task11_3_regression_0 22.70 24.42 26.38 21.08 19.52 25.60 24.76
task12_1_classification_am 0.08 15.22 0.00 0.00 0.00 0.00 3.98
task12_1_classification_dz 8.13 19.11 11.50 12.05 0.00 0.00 6.38
task12_1_classification_ha 28.48 31.37 30.81 30.60 100.00 100.00 30.30
task12_1_classification_ig 29.01 28.90 29.81 29.82 0.00 0.00 27.61
task12_1_classification_kr 21.05 26.31 19.74 18.98 0.00 0.00 15.49
task12_1_classification_ma 76.71 77.26 78.20 77.79 76.84 77.40 75.75
task12_1_classification_pcm 30.66 29.26 25.27 0.00 0.00 0.00 20.00
task12_1_classification_pt 7.44 11.89 17.90 16.89 0.00 0.00 13.94
task12_1_classification_sw 11.06 16.07 0.00 15.43 100.00 22.30 12.31
task12_1_classification_twi 49.96 49.89 47.99 24.40 100.00 100.00 41.67
task12_1_classification_yo 28.92 30.76 28.15 35.29 28.28 35.12 30.13

Table 15: Comparison of different language models for the best single dataset setting of each task. The official
metrics for each task are shown. ∗ due to an error in the code the threshold for including labels was not set correct
(except for bert-base-multilingual-cased), results are thus incomplete.
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