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Abstract
In the age of the Internet, it should not be a problem to find enough information on a controversial
topic within a short time to be able to form a well-founded opinion. However, finding arguments from
different points of view on a particular topic is still difficult. Therefore, the Touché Shared Tasks of
this and the last years are concerned with argument retrieval, that is to find relevant and qualitative
arguments. In this paper, we present our results for this year’s Touché Task 1. We test and combine
various state-of-the-art argument retrieval methods and natural language processing to retrieve relevant
sentence pairs on controversial topics. Evaluating the various combinations of our methods, we compare
the different approaches. We find that using DirichletLM as retrieval model yields longer sentences than
using BM25 and that pairing single sentences with the Next Sentence Prediction of BERT works better
than with the sentence similarity of SBERT. We evaluate the possible combinations using precision@10
and nDCG@10. Our best retrieval system achieves a precision@10 of 0.67 and a nDCG@10 of 0.73 using
sentence classification in preprocessing, DirichletLM, querying the arguments with Boolean queries using
noun chunking, pairing the sentences via Next Sentence Prediction and re-ranking using a BERT-base
method.
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1. Introduction

While facts can be looked up in seconds in modern search engines like Google1, Bing2 and
DuckDuckGo3, these search engines often fail to provide arguments on either side of a contro-
versial issue. This makes it difficult to form a well-founded opinion on complex ambiguous
issues. Thus, to learn about arguments from both sides of a controversial issue, one must resort
to something other than the typical search engines mentioned above. Following discussions
on such topics can give one the opportunity to get an overview of arguments from both sides
of an issue. Such discussions often take place on social media. However, social media often
do not provide a good basis for an opinion-forming process, as people quickly get caught up
in a bubble that exclusively reproduces opinions that already exist in their heads [1]. With
controversial topics, however, it is usually essential to look at all sides of the issue in order
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to form an well-founded opinion. This is why argument search engines which are presenting
different views on a controversial topic are becoming increasingly important.

The Touché @ CLEF: Argument Retrieval 2022 [2] Shared Task 1: "Argument Retrieval for
Controversial Questions" calls scientists for new approaches on argument search. The goal of
this task is to implement an information retrieval system that returns summarized arguments
on controversial topics. The task specifies the search results to be pairs of sentence IDs taken
from a preprocessed version of the args.me corpus [3]. The three dimensions of quality which
should be focused on are: “(1) each sentence in the pair must be argumentative (. . . ), (2) the
sentence pair must form a coherent text (. . . ), and (3) the sentence pair constitutes a summary of
a single argument (. . . ).” [2]. We focus our efforts on using different state-of-the-art argument
retrieval and natural language processing methods. The retrieval system consists of different
modules that together form the holistic pipeline, which are combined in different ways for the
evaluations to find the retrieval system that yields the best results in the end.

In this paper we will discuss related work, focusing on works from which we drew the
inspiration and approaches we used for our retrieval system in Section 2. In Section 3 we will
go into more detail about our methodological approach and present and explain the individual
optional components of our retrieval system. After that, we will discuss the evaluation and
elaborate on our results in Section 4. In Section 5, we conclude to what extent the individual
modules of our retrieval system impact the relevance and present the combination of our
methods that achieved the best results in the evaluation. After that, in Section 5.1, we will also
point out future directions in which our retrieval system could be improved.

2. Related Work

This work draws on existing information retrieval methods, argument mining and natural
language processing. The following sections introduce the args.me corpus, methods of argument
classification, ranking, and sentence pairing.

2.1. args.me Corpus

Our retrieval system is based on an index from a preprocessed version of the args.me corpus
provided by the shared task organizers. The original version of this dataset was introduced in
2019 by Ajjour et al. [3]. It was created by crawling four selected online debate portals, namely
(1) debatewise.org, (2) idebate.org, (3) debatepedia.org and (4) debate.org. The dataset consists
of 387,606 arguments.

All of the crawled portals are structured similarly. They consist of user created forum-threads;
each thread discusses a controversial topic. In all of the four portals, when contributing their
point of view to a thread, users must choose a stance for it. Arguments in the preprocessed
dataset are modeled as a triple of (1) a conclusion which mostly is the title of the discussion in
the portal, (2) a premise which is a comment of a user on the related conclusion and (3) a pro
or con stance towards the conclusion which is chosen by the respective user [4]. The stance
of a premise is assumed to correspond to the stance the replying user took towards the topic.
Additionally, each argument is given a unique ID. The arguments are organized in rows of
topics with a unique topic ID, a conclusion and a list of premises with stance annotations.



The difference between the provided preprocessed version of the args.me corpus and the
original version is that the preprocessed version contains the premises split up into sentences in
an additional column. Since the arguments for the task should consist of two single sentences
each, the preprocessed version of the args.me corpus thus provides a better basis for our work.
Each sentence in the preprocessed corpus has a unique sentence ID it can be referenced by.

2.2. Ranking

Potthast et al. [5] compared the four standard retrieval models BM25, TF-IDF, DPH, and Dirich-
letLM. The conclusion of their work is that DPH and DirichletLM are relatively similar in terms
of relevance. However, TF-IDF and BM25 performed worse in the comparison. Even though
Potthast et al.[5] found that BM25 is not as good as Dirichlet, we use BM25 for comparison.
Gienapp [6] also uses DirichletLM as a retrieval model for textual relevance in Quality-aware
Argument Retrieval with Topical Clustering, referring to the frequent use of this model in the
context of Touché Shared Task 2020. The most frequently used retrieval model was DirichletLM
followed by BM25 [7] in the submissions for last year’s Touché Task. For comparison we use
BM25 in addition to DirichletLM.

2.3. Argument Classification

As described in Section 1, one of the quality dimensions of the task is that each sentence
of a retrieved sentence pair must be argumentative. To approach the quality dimension of
argumentativeness, we found two promising methods in the literature [8, 9].
Gienapp et al. [8] used a support vector machine (SVM) to classify given texts passages into
arguments and non-arguments. This SVM was trained on the Webis-ArgQuality-20 corpus
[8]. Regardless of the premise’s topic, a binary decision is made whether this text span is
an argument or not. Gienapp et al. [8] also trains a support vector regression model, which
determines the quality of a text span classified as an argument. Because the text quality is not
one of the quality dimensions in this year’s Touché task, we decide to use only the SVM for
classifying text passages into arguments for our retrieval model.

Another method of classifying arguments was presented by Reimers et al. [9]. Contrary to
the methods above, they worked on sentence level argument classification. Also, their approach
takes a topic into account, to which the sentence can either be an argument for, an argument
against or not argumentative. For this, they fine-tuned multiple language models such as ELMo
and BERT to the task of argument classification.

The best performing models they present are BERT-base𝑡𝑜𝑝𝑖𝑐 and BERT-large𝑡𝑜𝑝𝑖𝑐. They are
fine-tuned versions of the BERT-base and BERT-large models, respectively. The input is a topic
and a sentence. The model classifies the sentence either as an argument for, an argument against
or not argumentative. The model was trained on the UKP Sentential Argument Mining Corpus,
which annotated 25,492 sentences over eight controversial topics. We used their pretrained
BERT-base𝑡𝑜𝑝𝑖𝑐, which we refer to as ACL𝐵𝐸𝑅𝑇 in our experiments.



Figure 1: Abstract overview of our retrieval system. It consists of the preprocessed args.me corpus
(Section 3.1), preprocessing (Section 3.2), the indexing (Section 3.3), the retrieval (Section 3.4), and the
sentence-matching (Section 3.5.2), which yield the argument pairs.

2.4. Sentence Pairing

An essential step for accomplishing the Touché task is matching the retrieved sentences since
quality dimensions (2) and (3) of the task (Section 1) refer to pairing sentences. We use two
methods in order to pair sentences. The first method we use pairs sentences by similarity. First,
we transform the sentences into sentence embeddings. For that, we use Sentence-BERT (SBERT)
by Reimers and Gurevych [10]. SBERT is an extension of BERT, which, by utilizing Siamese
and triplet network structures, reduces the processing time for the transformation of sentences
into meaningful sentence embeddings. Second, we match the sentences calculating the cosine
similarity between these sentence embeddings. This forms our initial pairing approach. Our
second method also uses BERT, a transformer that is intended to capture the relationship
between sentences. For this purpose, BERT was trained with a Next Sentence Prediction (NSP)
task. This means that BERT was given labeled training data consisting of two sentences, where
consecutive sentence pairs got the label IsNext and random sentence pairs got the label NotNext
[11]. Since BERT was trained with exactly such a task, it was apparent to us to use BERT for
exactly this purpose. Therefore, our second approach utilizes BERT to find the best match for a
given sentence using NSP.

3. Methodological Approach

In this Section, we describe all methods we tested to retrieve topic relevant and qualitative
sentence pairs from arguments. These methods compose optional components in our retrieval



system. First, we describe the necessary preprocessing and indexing steps of our retrieval
system. Then, we explain our approaches to retrieve topic relevant sentences using different
query structures, noun chunking, and re-ranking via Query-Based Argument Classification.
Lastly we detail on out approach to pair sentences using sentence similarity and NSP.

The retrieval system consists of optional preprocessing steps as described in Section 3.2,
indexing of the sentences with Elasticsearch4 (Section 3.3), retrieval of sentences with one or
more methods described in Section 3.4 and one of the two sentence pairing methods described
in Section 3.5. An abstract overview of the individual modules of the retrieval system can be
seen in Figure 1.

3.1. Corpus

From the provided preprocessed corpus args.me described in Section 2.1, the single sentences
were used for our retrieval system. We use single sentences, assuming that the sentence that
best completes or matches a retrieved sentence does not necessarily have to come from the
same source argument. Therefore, our retrieval steps are performed on these single sentences.
Consequently, we do not further include the arguments from which the sentences originate
in the search, except for argument classification based on the Webis-ArgQuality-20 corpus
described in Section 3.2.2.

3.2. Preprocessing

Initially, we remove duplicates of single sentences on an exact text match to ensure the variety
of search results and to avoid identical arguments. In an exploratory analysis of the corpus,
we found many sentences that we were confident would never produce a satisfying result,
because (1) they were not proper, that is well-formed, sentences at all (e.g. a URL, a reference,
grammatically incorrect) or (2) they were not argumentative in any way (e.g. off-topic, spam,
filler sentences, sentences just not making a point towards the topic), and thus not fulfilling the
quality dimension, that every retrieved sentence should be argumentative. We experimented
with ways to automatically detect and remove such content from the corpus through natural
language sentence classification, and two argument classification approaches, which we explain
in the following.

3.2.1. Natural language sentence classification

To remove the not proper language sentences, we established a preprocessing step to categorize
our given premises and conclusions into proper sentences and not proper sentences. We started
from the simple heuristic that a natural language sentence always contains a verb. Thus, we
check the premises and conclusions for the presence of a verb. To do so, we tagged each of
these premises and conclusions using NLTK’s POS tagger [12]. Then, we checked the list of
POS tags of a sentence for the presence of a verb tag by creating a list of all verb tags of the
POS tagger and compared the tag list of the respective sentence with this list. We declared

4https://www.elastic.co



premises or conclusions for which no word was tagged with a verb tag from the reference list
as non-sentences and not processed further in the retrieval system.

3.2.2. Webis-ArgQuality-20 Argument Classifier

In order to remove sentences from the corpus that are not argumentative, we trained an SVM
to classify arguments. This is based on the approach by Gienapp et al. [8] described in 2.3. We
trained the SVM using the Webis-ArgQuality-20 corpus [8]. One problem in implementing the
SVM is that the underlying Webis-ArgQuality-20 corpus consists of whole argument phrases.
These are coherent sentences that together make up an argument, rather than single sentences.
Therefore, we used the argument phrases from the preprocessed args.me corpus. Thus, the SVM
classifies the argument phrases whether they are arguments or not. Then, the complete passages
classified as no argument are removed from the corpus and no longer considered in further
processing. Thus, it is assumed that passages that the SVM has classified as no arguments do
not contain relevant or argumentative sentences.

3.2.3. Classifying Arguments with BERT

The second method of removing non-argumentative sentences is based on ACL𝐵𝐸𝑅𝑇 , which
classifies sentences as argumentative or not argumentative with respect to a given input topic,
as described in Section 2.3. The defining principle is that the sentences are not classified in
isolation, but in the context of a topic.

We labelled all sentences of our dataset with respect to it’s corresponding conclusion. As
topic information, we provided the model with the corresponding conclusion of each sentence.
Sentences classified as noArgument were removed from the corpus. All sentences classified as
Argument_for or Argument_against were kept. The reasoning is that sentences, that are not
argumentative with respect to their corresponding conclusions, have little chance to be strong
arguments in any context. The stance information was not used for our retrieval system because
the classified stance in this case refers only to the underlying conclusion of the respective
sentence.

3.3. Indexing

We use Elasticsearch to index the premises and conclusions in the preprocessed args.me corpus.
Each document in our index consists of the sentence ID associated with the args.me record, the
text of the sentence, and its corresponding conclusion. In addition, using Elasticsearch’s inherent
analyzer pipeline, different filters are applied to each document. These filters are stemming,
stop word removal, and text lower casing. The filters are applied on both the sentence and
conclusion text fields.
Depending on the retrieval system composition, these documents are then ranked using either
DirichletLM or BM25. We determine the parameter 𝜇 for DirichletLM retrieval by determining
the average length of the individual sentences in the corpus. 𝜇 is 116 after the preprocessing
step of sentence classification.



3.4. Retrieval

After indexing the documents using Elasticsearch, the retrieval is done using the Elasticsearch
Search API. For this purpose, we call the Elasticsearch Search API with different query requests.
The query requests consist of different query components depending on the retrieval system
composition. We distinguish between a simple, naive baseline approach that understands
the entered search term as a composition of individual terms and a more refined approach
considering Boolean queries. The refined approach considers terms in the text field of the
document sentence and terms in the conclusion field of the index, as described in 3.4.1. Thus,
sentences with one of the search terms in the sentence and in the corresponding conclusion field
are given particular significance. For this second approach, we have developed an additional
feature as will be described in Section 3.4.2. This feature uses natural language processing to
extract specific terms from the search query and give them particular weight. In Section 3.4.3,
we describe our re-ranking approach. Thus, we use the ACL𝐵𝐸𝑅𝑇 . After the single sentences
have been retrieved using one of the two query methods, they are evaluated with ACL𝐵𝐸𝑅𝑇

for their argumentativeness concerning the query and, if so, ranked further up.

3.4.1. Query

The queries are full text queries, which we direct to the endpoint of the Elasticsearch index in
Elasticsearch’s query Domain Specific Language (DSL). These full text queries allow searching
the text of a specific document field (sentence or conclusion) in our index. We process the
query string with the same analyzer pipeline used to index the Elasticsearch fields, described in
Section 3.3. For ranking the sentences, we use either BM25 or DirichletLM.

We use different full text queries of the query DSL. As a first approach we use a simple match
query. The match query searches by default on one document field and separates the query
string into individual terms, then combined with a logical or operator. The second - more
elaborate - approach uses the Boolean query match_bool_prefix of the Query DSL Language.
This allows for queries that consist of several subqueries. With each subquery that matches a
document, the calculated score for this document increases concerning the root-query. Different
fields can also be taken into account using this query type. For example, we use this query type
to search the sentence and conclusion fields simultaneously. Thus, documents in the index that
match query terms in both, the sentence field and the conclusion field, are ranked higher. In
addition to viewing the query string as a series of individual terms linked with an or operator,
we add another subquery that connects the query terms with an and operator. Thus, documents
in the index with the exact wording are additionally boosted. Since not all parts of a search
query have the same significance for the search results and only in very few cases the entire
query string occurs in the text we have refined the second query approach. We extract certain
groups of terms of the query string to search for them using the match_phrase_query. The
match_phrase_query scores exact matches much higher when the search query occurs in the
same way in the text of the searched field.



3.4.2. Noun Chunking

Compound terms, phrases composed of more than one noun, can have a different meaning than
the individual words that compose them, such as sex education [13]. Therefore, these compound
terms should be given special consideration in the query. In evaluating our initial experiments,
we found that too little value was placed on compound terms. This is because each word of the
query was evaluated and searched as a single term in our basic query process. To address this
problem, we tried to find a way to consider the compound terms and the nouns in the query
and boost them. For this task, we deploy a method that we call noun chunking. For this, we use
the Noun Chunker from spaCy5. Noun chunks can be considered as "base noun phrases" and
consist of a noun and descriptive word that relates to the noun. These descriptive word can be
any word specifying the base noun. We pass the query to spaCy which returns a list of noun
chunks. These noun chunks are then appended to the Boolean query in match_phrase_query
and thus considered separately again when retrieving results in the query process. It is also
possible to give the match_phrase_query an extra boost to highlight these noun phrases even
more.

3.4.3. Re-Ranking: Query-Based Argument Classification

We want our retrieval system to place strongly argumentative sentences on high ranks. When
doing the first evaluations, we noticed that the most argumentative sentences would not always
be the highest ranking. To combat this, we once again utilized ACL𝐵𝐸𝑅𝑇 described in Section
2.3. The classifier takes a sentence and a topic as input, which we hand over from the list of
sentences retrieved by Elasticsearch. In contrast to how we use ACL𝐵𝐸𝑅𝑇 in preprocessing,
where we use the conclusion as a topic, we now use the query. This approach considers the
properties of a sentence (argumentative or not) depending on the particular input and does not
assume that a sentence is inherently argumentative. Sentences classified as an argument for or
an argument against were boosted, so they would rank first before the sentences classified as
no argument.

3.5. Sentence Pairing

Sentence pairing describes the task of matching two relevant sentences for a specific query. We
tried different approaches to decide whether two sentences match. The first approach pairs the
sentences based on their cosine similarity. In the second approach, the probability that a second
sentence follows the first sentence is calculated. The determined value is maximized in both
cases, and the corresponding sentence is assigned its optimal match.
We use the number of sentence pairs that should appear in the output to determine the number
of top sentences. Top sentences are the single sentences relevant to the query which form the
first sentence of each retrieved sentence pair. The remaining sentences to compare are the
retrieved sentences without the top sentences. Pairing is performed between these top sentences
and the pool of the remaining sentences. The number of sentences to be compared with each
top sentence is many times larger than the desired number of sentence pairs in the output. Once

5https://spacy.io



a sentence is matched with a top sentence, it is removed from the pool of the match candidates,
so it cannot appear for twice. Matching is performed in descending order so that the entire
pool of match candidates is available for the first sentence, and this pool becomes successively
smaller.

3.5.1. Sentence Similarity

We match sentences by following the intuition that if a retrieved sentence is relevant and argu-
mentative to the associated query and similar to a second sentence, the latter will complement
the first sentence and strengthen the argument. Based on the approach described in Section
2.4, we first transform the sentences into sentence embeddings. These sentence embeddings of
the top sentences are now matched against the sentence embeddings of the remaining match
candidates in terms of cosine similarity. Each top sentence is then assigned the sentence for
which the cosine similarity is the highest.

3.5.2. Next Sentence Prediction

As an alternative sentence pairing method to sentence similarity, we experimented with Next
Sentence Prediction (NSP) which we explained in more detail in Section 2.4. Thus, for each
sentence that our retrieval system returns, we compute the probability that a specific other
sentence follows it. This approach follows the idea that a sentence that is relevant and argu-
mentative by our retrieval system concerning the query is likely to be followed by a sentence
that (1) syntactically goes along with the structure of the previous sentence and (2) strengthens
and completes the mentioned argument by the first sentence. In descending order, we calculate
for each sentence the probability computed with every other sentence that has not been used in
any combination so far. Then, we assign each sentence to the sentence that is most likely to
follow it.
To implement this, we use the pre-trained bert-base-uncased model from Hugging Face’s Trans-
former Library [14], which is based on the work of Devlin et al. [11]. First, the model transforms
both sentences into sentence embeddings using the pre-trained BERT tokenizer. Then the model
predicts how likely the second sentence is to follow the first sentence. The pair of sentences
that achieves the highest score among all possible combinations of first and second sentences is
the best match. Using the NSP model, the desired number of sentence pairs is formed from the
top sentences and the less highly ranked sentences.

4. Evaluation

To evaluate the methods described above, we applied the retrieval system to ten test queries
with varying components enabled, resulting in 8 different combinations. For each query, we
retrieved ten results, which we then annotated rating each result with a score out of (-2, 0, 1,
2, 3). The heuristics we used to assign scores during the evaluation can be seen in Table 1.
From the annotated results, we calculated the precision@10 and nDCG@10 for each evaluated
combination of components. Precision@10 was calculated interpreting ratings of -2 and 0 as
not relevant and 1, 2 and 3 as relevant results.



score label

-2 spam
0 fulfills some criteria but not relevant to the query
1 relevant to the query and fulfills criteria (1)
2 relevant to the query and fulfills criteria (1) and (2)
3 relevant to the query and fulfills criteria (1), (2) and (3)

Table 1
For the score a pair of sentences could receive in our evaluation, there were certain criteria that we used
as a guideline for assigning the scores.
Quality dimensions specified by the task were included in the scoring:
(1): each sentence in the pair is argumentative
(2): the sentence pair forms a coherent text
(3): the sentence pair constitutes a summary of a single argument

preprocessing retrieval query re-ranking pairing precision@10 nDCG@10

BM25 simple sim 0.34 0.55
BM25 simple NSP 0.47 0.65
BM25 simple ACL𝐵𝐸𝑅𝑇 NSP 0.54 0.69

SCL DLM simple NSP 0.36 0.62
SCL + ACL𝑆𝑉𝑀 DLM simple NSP 0.36 0.62
SCL + ACL𝐵𝐸𝑅𝑇 DLM simple NSP 0.39 0.57
SCL + ACL𝐵𝐸𝑅𝑇 DLM simple ACL𝐵𝐸𝑅𝑇 NSP 0.42 0.62
SCL DLM Boolean NSP 0.48 0.59
SCL DLM Boolean + NC ACL𝐵𝐸𝑅𝑇 NSP 0.67 0.73

Table 2
The evaluation results are measured for the individual retrieval system compositions in precision@10
and nDCG@10. SCL refers to the sentence classifier used in preprocessing (Section 3.2.1). ACL𝐵𝐸𝑅𝑇

refers to both, the preprocessing and the re-ranking step (Section 3.2.3, Section 3.4.3). ACL𝑆𝑉𝑀 is the
argument classification approach described in (Section 3.2.2). DLM stands for DirichletLM, NC is noun
chunking (Section 3.4.2), and sim refers to sentence similarity (Section 3.5.1). The best results are shown
in bold.

The combinations to evaluate were chosen exploratively. First, we evaluated the retrieval
system using BM25 as a ranking function, results shown in Table 2. Here, we compared the
performance of our two sentence pairing methods. NSP outperformed sentence similarity in
precision@10 and nDCG@10, which is why all following retrieval systens we evaluated utilize
NSP.

The highest precision@10 and nDCG@10 we can report with BM25 is 0.54 and 0.69 respec-
tively using NSP as the sentence-pairing method and ACL𝐵𝐸𝑅𝑇 for re-ranking.

Our second round of evaluation were all done with NSP because of the promising results in
the first evaluation round as shown in Table 2. DirichletLM as a ranking function was chosen
since it has proven to work well with argument retrieval in previous work, as described in
Section 2.2. We found that the results were worse than our best performing retrieval system



with BM25. DirichletLM, NSP and the sentence classifier (Section 3.2.1) yield a precision@10
of only 0.36. Also, we found that the preprocessing with the SVM did not change the result
at all. Results improved with ACL𝐵𝐸𝑅𝑇 in preprocessing and improved again with the query
based ACL𝐵𝐸𝑅𝑇 enabled. Finally, our best performing retrieval system with DirichletLM and
NSP, even beating our best retrieval system setup with BM25, utilized the sentence classifier in
preprocessing, the Boolean query using noun chunking for querying, and the ACL𝐵𝐸𝑅𝑇 for
re-ranking, reaching a precision@10 of 0.67.
Lastly, we examined the sentence lengths of all approaches and sorted them according to
whether they were performed with BM25 or DirichletLM. The average sentence length of the
approaches shown in Table 2 performed with BM25 as the ranking method is 165.15, whereas
the approaches using DirichletLM have a much longer average sentence length of 298.19.

5. Discussion

In the first part of this section, we will go through the individual optional methods of our
retrieval system and take a closer look at their respective influence of each of them. In doing so,
we will also discuss the shortcomings of the approaches. In the second part, we address possible
further developments of our approaches that could improve our retrieval system in (Section
5.1).

Preprocessing can be divided into sentence classification and argument classification. We can
say that our sentence classifier had an influence in the sense that non-sentences such as links
appeared less frequent when going through the results checking a sentence for the presence of a
verb. No significant change in the result set was observed after applying argument classification
using the SVM. A possible explanation for this would be that the argument passages classified
as non-arguments did not find their way into the final retrieved result set, so filtering them out
beforehand did not further influence the result. The same reasoning applies to the ACL𝐵𝐸𝑅𝑇 ,
which could not make any significant improvement in the preprocessing step, as can be seen in
Table 2.

Our approaches can be divided into two parts for indexing based on the underlying retrieval
model. On the one hand, BM25 was used as the retrieval model that provided the best results
until the last evaluation run of the DirichletLM retrieval model where we use the noun chunking
approach. On the other hand, we obtained the best results using DirichletLM as the retrieval
model, which will be described in more detail later. Moreover, we noted that DirichletLM
produced nearly twice as long sentence pairs as BM25 for all the performed experiments. In
some cases, we retrieved sentences that should have been divided into several single sentences,
which they were not due to missing punctuation marks.

We also used a number of different approaches for retrieval. In our first experiments, we used
a simple query where the words of the entered topic are understood as single terms. Using the
Boolean query improved the resulting precision@10 value slightly. In the Boolean query, both
the sentence and the conclusion field of the documents were included in the ranking. This led to
additional results that did not include terms from the actual query in the sentence field, but still
related to the query due to a matching conclusion. Thus, the field of match candidates for the
pairing methods was expanded, resulting in more heterogeneous sentence-pair combinations. In



Figure 2: Final retrieval system, which yielded the results. It consists of the preprocessed args.me
corpus (Section 3.1), the sentence classification (Section 3.2.1), the indexing by DirichletLM (Section 3.3),
the retrieval by Boolean queries (Section 3.4.1) extended by the noun chunking (Section 3.4.2) and the
subsequent re-ranking by ACL𝐵𝐸𝑅𝑇 (Section 3.4.3). Finally, the NSP method (Section 3.5.2) performs
the pairing, which outputs the argument pairs.

addition, our noun chunking approach was also used in these Boolean queries, which increased
the precision@10 value by boosting individual terms of the query. Besides the query, another
crucial part of the retrieval is the ranking. ACL𝐵𝐸𝑅𝑇 is used again in the retrieval step to
re-rank the queried results. The retrieved results classified by ACL𝐵𝐸𝑅𝑇 as argumentative
concerning the associated query string were boosted and re-ranked further up the results. As a
re-ranking component in the retrieval system, ACL𝐵𝐸𝑅𝑇 has a more significant impact on the
results than the preprocessing step.

For sentence pairing, we tried two different approaches. The worse approach of the two
was the sentence similarity approach. There were problems with the approach because the
matched sentences were too similar. Too similar sentences often consist of the same words. The
second sentence merely repeats the first and does not logically continue it. Therefore, we did
not consider this approach further after our first round of evaluation and instead focused on
the second approach. This approach yields better results regarding sentence pairing since NSP
is not about finding similar sentences but about how likely it is that a sentence follows a given
sentence.

Finally, after evaluating different combinations of the different modules of our retrieval system,
we were able to identify the retrieval system that gave the best results. This retrieval system
uses only the sentence classifier since this was the only classifier in the preprocessing step,
producing noticeable evaluation differences. In addition, the retrieval step uses Boolean queries
with noun chunking and ACL𝐵𝐸𝑅𝑇 for re-ranking. We used the retrieval model DirichletLM,
and NSP was used as the sentence pairing method. As seen in the last row of Table 2, this
combination obtained the best results. With a precision@10 value of 0.64 and an nDCG@10
of 0.74, our retrieval system does not yet function optimally, but offers room for improvement
due to its modular structure. The application of certain modules led to an improvement of



precision@k or nDCG@k. For example, noun chunking improved the precision@10 value,
while the ACL𝐵𝐸𝑅𝑇 improved the nDCG@10 in the re-ranking step. Our final retrieval system
can be seen in Figure 2.

5.1. Future Directions

In order to further develop our retrieval system, various modules could be refined, potentially
yielding better results. For example, the use of the ACL𝐵𝐸𝑅𝑇 produced better results in the
re-ranking process, but we did not use any fine-tuning. It would be possible to train the classifier
on our evaluation data to improve the results and the re-ranking with the ACL𝐵𝐸𝑅𝑇 . After we
have done evaluation runs, there would be data with which the classifier could be trained on
the topics given by Touché, in addition to the eight topics on which the classifier was originally
trained.

A further improvement to re-rank the results would be possible based on ACL𝐵𝐸𝑅𝑇 . In
the current approach, the sentences classified as arguments by ACL𝐵𝐸𝑅𝑇 are pushed to the
beginning of the retrieved sentences. To refine this re-ranking, it would be possible to count
the classification towards the retrieval score by a boost and not just pushing the classified
arguments to the beginning.

When evaluating the results, we noticed that the sentence pairs sometimes contradict each
other despite their respective good argumentativeness or relevance. The given stances from the
dataset cannot be used due to our approach, which considers the sentences independently of
their respective original argument passage. One way to address this problem would be to use,
for example, sentiment analysis or similar methods to ensure that the sentences are matched
only with sentences that represent the same point of view.

6. Conclusion

The aim of the present research was to implement a retrieval system to obtain relevant and
argumentative sentence pairs from the args.me corpus and evaluate its performance.
In the preprocessing step, we have removed duplicates and sentences that do not add value
to the final result. The latter include non-proper language sentences, which were identified
based on POS heuristics, and non-argumentative sentences, which were identified using two
different argument classifiers ACL𝐵𝐸𝑅𝑇 and ACL𝑆𝑉𝑀 based on approaches by Gienapp [6]
and Reimers et al. [9]. For indexing and retrieving the premises and conclusions, Elasticsearch
with either DirichletLM or BM25 was used. In addition to a simple query where the search
terms are understood as individual terms, we also used Boolean queries to retrieve the relevant
arguments. Within the Boolean queries our noun chunking approach allowed certain terms to
be weighted. The ACL𝐵𝐸𝑅𝑇 based on Reimers et al. [9] was used again after retrieval to re-rank
the sentences based on their argumentativeness. In the last step, the obtained top sentences
were matched with the remaining retrieved sentences based on two different approaches. In the
first approach, the sentences were matched based on their cosine similarity using SBERT [10].
In the second approach, the sentences were matched using BERT and NSP [11].
Nine different combinations of these intermediate steps were evaluated using precision@10 and
nDCG@10. The best combination with a precision@10 of 0.67 and an nDCG@10 of 0.73 used



our sentence classifier and ACL𝐵𝐸𝑅𝑇 in preprocessing, DirichletLM for indexing, the Boolean
query with Noun Chunking, and ACL𝐵𝐸𝑅𝑇 again for re-ranking.
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