Retrieving Comparative Arguments using Deep Language Models

Viktoriia Chekalina, Alexander Panchenko

Skolkovo Institute of Science and Technology

9 aug 2022

Task

- Given a set of 50 topics with a comparative query, i.e. question like "What is better X or Y?"
- For each topic:
 - ▶ Retrieve relevant passages in a corpus of about 0.9 million texts.
 - For every retrieved passage, detect stance towards the compared objects X and Y.
- ► Two criteria for evaluating retrieved passages:
 - Relevance how sensible and supportive the answer is.
 - Quality good styling and well understoodness of the text.

Approach to ranking

ColBERT - the ranking model which fits deep language model BERT for informational retrieval. ColBERT provides *Late Interaction* concept:

- the query and the document are encoded separately
- resulting similarity of pair is a sum of similarity of every query token and the closest document token

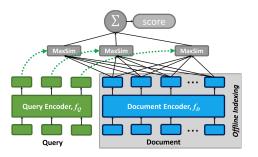


Figure: The scheme of Late Interaction matching is used in Colbert architecture. Source of the

image: https://github.com/stanford-futuredata/ColBERT.

Approach to ranking

We use three different types of pre-trained ColBERT:

- ColBERT original checkpoint, generated at the University of Glasgow ¹ on MSMARCO dataset
- ► ColBERT from scratch checkpoint, pre-trained by us on MSMARCO dataset
- ► ColBERT fine-tuned checkpoint, pre-trained on MSMARCO, fine-tuned then on the previous year Touche data

 $^{^{1} \}texttt{http://www.dcs.gla.ac.uk/~craigm/colbert.dnn.zip} \\ \bullet \textcircled{\texttt{?}} \\ \bullet \bullet \textcircled{\texttt{?}} \\ \bullet \bullet \textcircled{\texttt{?}} \\ \bullet & \textcircled{\texttt{?}} \\$

Datasets and Stance Detection

Datasets used in training from scratch and fine-tuning.

- ► MSMARCO (Microsoft Machine Reading Comprehension) is based on queries and passages from the Bing system
- ▶ In the fine-tune dataset, the triples $< q, d^+, d^- >$ consist of queries from previous years, texts assessed by high score, texts set by low score or text related to other queries.

Dataset	Task	Number of triples
MSMARCO-Passage-Ranking	train	39 780 810
Dataset based on Touché 2021	fine-tune	46 450

Stance Detection

To detect passage polarity, we consider text between two object entrances and classify it using Comparative Argumentative Machine (CAM) ².

²https://ltdemos.informatik.uni-hamburg.de/cam ← □ → ← ② → ← ≧ → ← ≧ → → ≥ → ○

Results on Validation and Test sets

Table: NDCG@5 results for quality and relevance of retrieved document on validation set.

Method	Quality	Relevance
Baseline'21 Best Answer'21 ColBERT original ColBERT from scratch ColBERT fine-tune	0.427 0.421 0.413 0.342 0.322	0.649 0.591 0.474 0.314 0.365

Table: Final evaluation scores on the test set for Katana team as compared to the Top-1 approaches.

Method	NDCG@5 relevance	NDCG@5 quality	F1 stance detection
ColBERT original ColBERT from scratch ColBERT fine-tune	0.618 (Top-3) 0.601 0.574	0.643 0.644 (Top-3) 0.637	0.229 (Top-3) 0.221 0.212
Top-1 approach	0.758	0.774	0.313

Conclusion

- We apply BERT-based architecture ColBERT to the comparative text ranking task.
- We apply the XGBoost classifier for the stance detection of retrieved documents.
- ► The best scores, which place third places in the leaderboard, gives the model with weights pre-trained on the MSMARCO dataset.