Touché at CLEF 2024 | Human Value Detection

Hierocles of Alexandria at Touché: Multi-task & Multi-head Custom Architecture with Transformer-based Models for Human Value Detection

Sotirios Legkas, Christina Christodoulou, Matthaios Zidianakis, Dimitrios Koutrintzes, Maria Dagioglou, and Georgios Petasis

Institute of Informatics & Telecommunications National Centre for Scientific Research (N.C.S.R.) 'Demokritos' S Aghia Paraskevi, Attica, Greece

OVERVIEW

- HUMAN VALUE DETECTION@SEMEVAL23
- HUMAN VALUE DETECTION@CLEF24
- EXPLORATORY PHASE
- 04 PROPOSED APPROACH
- FINE-TUNING
- RESULTS
- CONCLUSIONS
- FUTURE WORK

HUMAN VALUE DETECTION@SEMEVAL23

- <u>Dataset</u>: Arguments
 - Premise, Conclusion, Stance
 - Monolingual task (English)
 - Our approach: Multi-task ensemble Model architecture
 - Main motive: handle class imbalance

HUMAN VALUE DETECTION@CLEF24

- <u>Dataset</u>: Texts (400-800 words)
 - Multilingual task (9 languages + English translations)
 - <u>Our approach</u>: Multi-task Model architecture
 - *Challenge 1:* Handle class imbalance
 - *Challenge 2:* Handle multiple languages
 - Challenge 3: Exploit context

EXPLORATORY PHASE (1/2)

Empirical Evidence (XLM-RoBERTa, Conneau et al., 2020¹):

- Superior performance when fine-tuned with multilingual data
 - Our work is compliant to the empirical results

Initial experiment:

- Fine-tuned XLM-RoBERTa model:
 - Single model trained on all available languages
 - Multiple models each for a single language

¹A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, V. Stoyanov, Unsupervised cross-lingual representation learning at scale, 2020. arXiv:1911.02116.

EXPLORATORY PHASE (2 / 2)

<u>Observations:</u>

- Models fine-tuned with multilingual data outperform monolingual ones
 - Validates empirical evidence
- Performance varies significantly across languages

Variation across languages can be attributed to:

- Language disparities
- Class imbalance across languages

Macro-F1 (XLM-RoBERTa) (base)All29.5English22.41Greek26.16German25.24French2.52Italian22.71
English 22.41 Greek 26.16 German 25.24 French 2.52 Italian 22.71
Greek 26.16 German 25.24 French 2.52 Italian 22.71
German 25.24 French 2.52 Italian 22.71
French 2.52 Italian 22.71
Italian 22.71
Dutch 18.71
Bulgarian 23.30
Turkish 28.03
Hebrew 24.16

EXPLORATORY PHASE (2 / 2)

<u>Observations:</u>

- Models fine-tuned with multilingual data outperform monolingual ones
 - Validates empirical evidence
- Performance varies significantly across languages

Variation across languages can be attributed to:

- Language disparities
- Class imbalance across languages

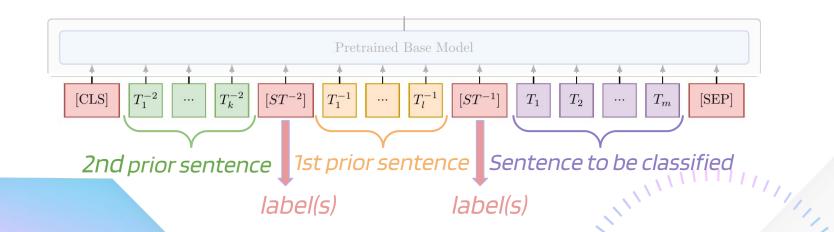
	macro-F1 (XLM-RoBERTa) (base)
All	29.5
English	22.41
Greek	26.16
German	25.24
French	2.52
Italian	22.71
Dutch	18.71
Bulgarian	23.30
Turkish	28.03
Hebrew	24.16

EXPLORATORY PHASE (2 / 2)

Observations:

- Models fine-tuned with multilingual data outperform monolingual ones
 - Validates empirical evidence
- Performance varies significantly across languages

Variation across languages can be attributed to:


- Language disparities
- Class imbalance across languages

	macro-F1 (XLM-RoBERTa) (base)
All	29.5
English	22.41
Greek	26.16
German	25.24
French	2.52
Italian	22.71
Dutch	18.71
Bulgarian	23.30
Turkish	28.03
Hebrew	24.16

PROPOSED APPROACH: MODEL INPUT

Takes advantage of the available *contextual information:*

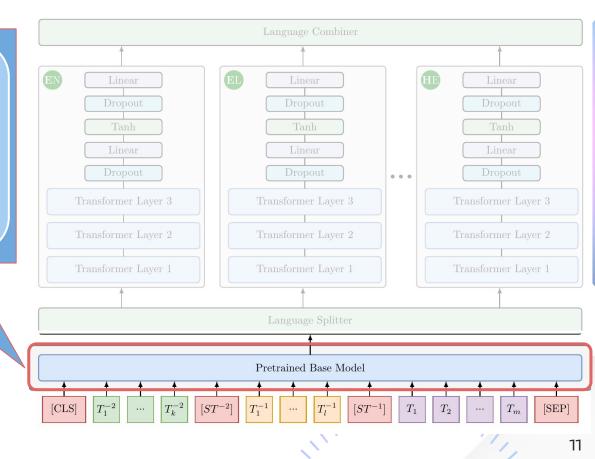
- Sentence under examination is prepended with the history of the 2 previous sentences
 - Depending on sentence availability and model input capacity
- Added special tokens to the preceding sentences:
 - *Training:* The annotated values of these sentences (19/38 classes)
 - Inference: The previously predicted values of these sentences (19/38 classes)

PROPOSED APPROACH: MODEL ARCHITECTURE (1/7)

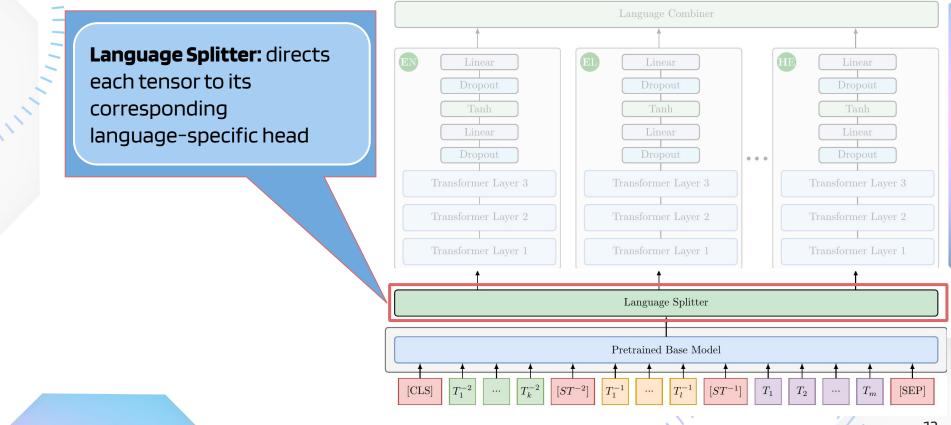
Considering:

- Multi-label classification task
- The language disparities
 - The linguistic nuances

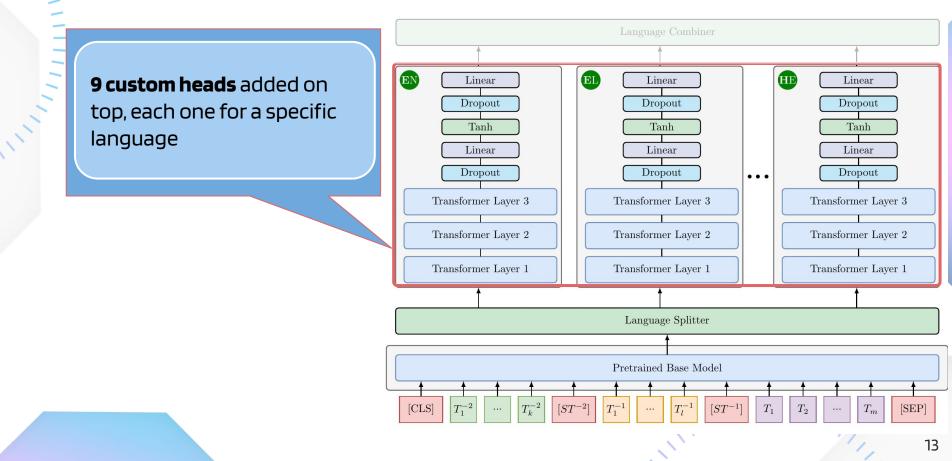
Our proposed approach:

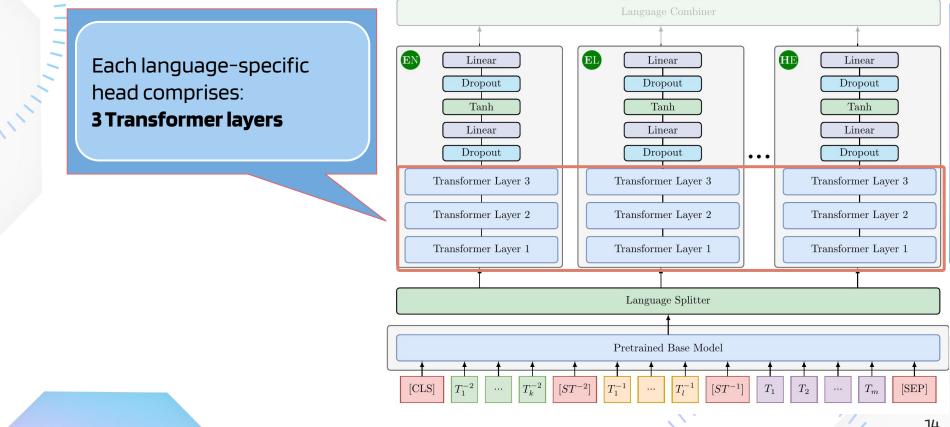

- Multi-task learning
 - Each language is being considered as a separate task
- Multi-head architecture
 - Each task corresponds to a single head
- Model extended with custom classification heads

PROPOSED APPROACH: MODEL ARCHITECTURE (2 / 7)


Foundation: Pre-trained Transformer language model (encoder)

111

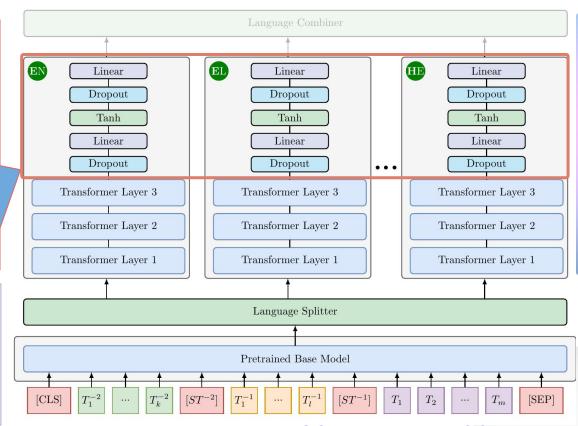

• The input batch is fed into the pre-trained base model


PROPOSED APPROACH: MODEL ARCHITECTURE (3 / 7)

PROPOSED APPROACH: MODEL ARCHITECTURE (4 / 7)

PROPOSED APPROACH: MODEL ARCHITECTURE (5 / 7)

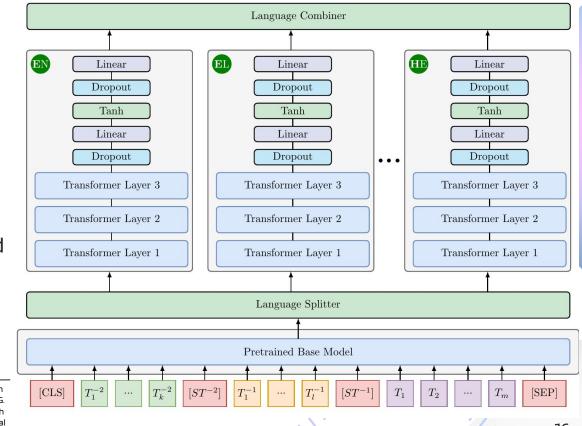
PROPOSED APPROACH: MODEL ARCHITECTURE (6 / 7)


3rd transformer layer's **[CLS]** followed by:

- Dropout
- Linear layer
- Tanh
- Dropout
- Linear layer

Problem

Solution: ?


 Class imbalance → unequal probabilities

PROPOSED APPROACH: MODEL ARCHITECTURE (7 / 7)

Classification Thresholds:

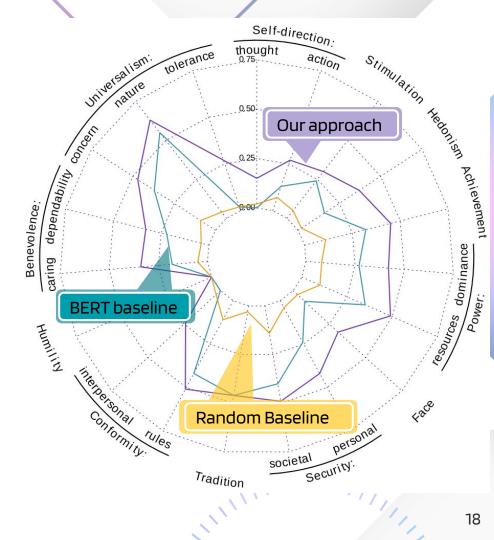
- Thresholds per class
 - Extending last year's winning approach (Schroter et al., 2023²)
- After sigmoid function applied to logits, predictions converted into:
 - **1**: if prediction >= threshold
 - **0**: if prediction < threshold

²D. Schroter, D. Dementieva, G. Groh, Adam-smith at SemEval-2023 task 4: Discovering human values in arguments with ensembles of transformer-based models, in: A. K. Ojha, A. S. Doğruöz, G. Da San Martino, H. Tayyar Madabushi, R. Kumar, E. Sartori (Eds.), Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), Association for Computational Linguistics, Toronto, Canada, 2023, pp. 532–541. URL:<u>https://aclanthologv.org/2023.semeval-1.74</u>. doi:10.18653/v1/2023.semeval-1.74.

FINE-TUNING

Fine-tuning:

- Binary Cross-Entropy Loss with Logits achieved the best results
- Positive weights for each class (most for under-represented classes)
 - Only helpful within monolingual classifiers


Threshold calculation:

- Keep threshold that maximizes the macro-F1 per class
 - Threshold range [0.05, 0.95]
- Generated predictions using the optimal threshold for each class

Hyperparameter	Value					
Seed	2024					
Number of Epochs	20					
Early Stopping Patience	5					
Sequence Length	512					
Train Batch Size	8/4					
Validation / Test Batch Size	8/4					
Learning Rate	5e-6					
Weight Decay	0.01					
Warm-up Ratio	0.01					
Optimizer	AdamW					
AdamW Epsilon	1e-8					
LR Scheduler	Linear					
Mixed Precision	fp16 / bf16					

RESULTS: SUB-TASK 1

- Our approach vs baselines (macro-F1):
 - Multilingual:
 - Custom XLM-RoBERTa-xl (0.39)
 - English:
 - Custom RoBERTa-large (0.37)
 - Custom DeBERTa-v2-xxl (0.37)
- Test set submissions outperformed baseline scores in both multilingual and English-translated datasets
- Our approach outperformed all other approaches for sub-task 1 in both multilingual and English-translated datasets

RESULTS: SUB-TASK 2

- Our approach vs baselines (macro-F1):
 - Multilingual: XLM-RoBERTa-xl
 - English: RoBERTa-large 4
- Outperforms all baselines
 - Except BERT-baseline (available only for English)
- Trained models with 38 classes to tackle both sub-task1&2
 - Alternative solution: tackle sub-task 2 as a separate classification problem
 - Not tested due to competition time constraints

SUBMISSIONS	macro-F1 (multilingual)	macro-F1 (English)
Custom XLM-R-XL	0.77	-
Custom R-large	-	0.77
BERT-baseline	-	0.81
Random-baseline	0.53	0.53
Random-baseline (EN)	-	0.52

CONCLUSIONS

Key points:

- Multi-task Model architecture
 - Considered languages as separate tasks → Capture linguistic nuances and disparities
- Dealt with data imbalance using classification thresholds for each class
- Exploiting contextual information (previous sentences and their classification)

Achievements:

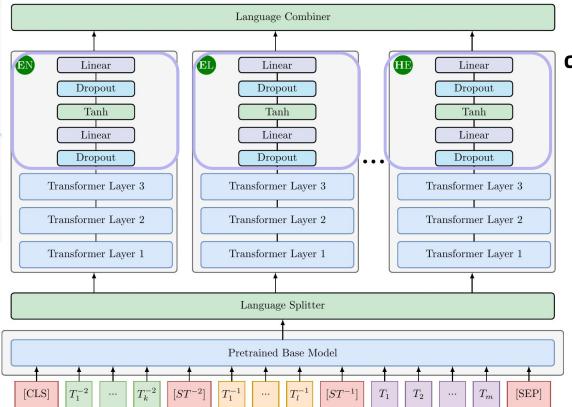
- 1st Place in sub-task 1 (Multilingual & English-translated datasets).
- Multilingual submission outperformed baseline in sub-task 2.

FUTURE WORK

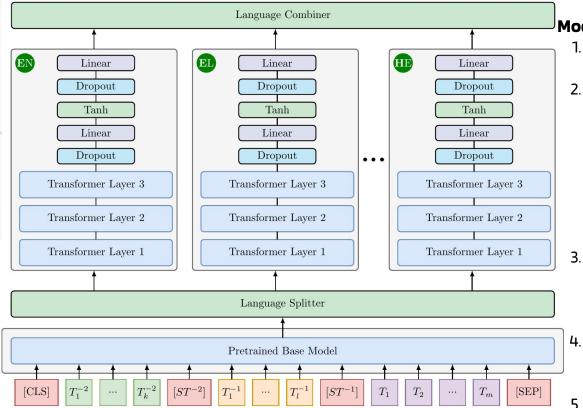
- Experiment with Larger Models:
 - Add more Transformer layers within the custom architecture
 - Leverage as foundation larger models like XLM-RoBERTa-xxl
- Experiment with Data augmentation
- Experiment with Ensemble modeling
- Experiment with alternative loss functions
- Experiment different classification strategies
 - To better address sub-task 2

THANK YOU FOR YOUR ATTENTION!

Do you have any questions?


Sotiris Legkas

Institute of Informatics & Telecommunications National Centre for Scientific Research (N.C.S.R.) 'Demokritos' Aghia Paraskevi, Attica, Greece DEMOKRITOS


SYSTEM OVERVIEW: MODEL ARCHITECTURE

Classification Process:

- The [CLS] token from the last Transformer layer (Transformer Layer 3) is passed through a dropout layer followed by a linear layer.
- The output of the previous linear layer is passed through a Tanh activation function and then subjected to a dropout and a linear layer.
- 3. The last linear layer produces **logits** corresponding to the number of classes.

SYSTEM OVERVIEW: MODEL ARCHITECTURE

Model Training Workflow:

- 1. The **input batch** is fed into the pre-trained base model.
- 2. The output of the pre-trained model is passed through the **language splitter** which splits it according to the language identifiers within the batch. Each split tensor is directed to the corresponding custom Transformer head based on its language for further processing.
 - The **logits** produced by each custom Transformer head are concatenated into a single batch through the **language combiner**.
 - The concatenated logits batch is passed through the **loss function** to compute the training loss.
- 5. Model performs **backpropagation**.

RESULTS: SUB-TASK1

11.

Achieved F_1 -score of each submission on the test dataset for sub-task 1. A \checkmark indicates that the submission used the automatic translation to English. Baseline submissions shown in gray.

		F ₁ -score	
Submission	EN	All Self-direction: thought Self-direction: action Stimulation Hedonism Achievement Power: dominance Power: resources Face Security: personal Security: societal Tradition Conformity: rules Conformity: interpersonal Humility Benevolence: caring Benevolence: caring Benevolence: dependability Universalism: nature Universalism: nature	-
multi-lingual XLM-RoBERTa-large_weights_context_ special tokens_19_only train da	ta	34 13 20 28 28 37 37 45 22 33 46 46 49 21 04 32 32 47 63	21
multi-lingual XLM-RoBERTa-large_context_19		36 15 28 35 35 44 39 47 28 40 48 49 50 20 08 33 32 47 60	24
multi-lingual XLM-RoBERTa-xl_context_special tokens_19		38 15 27 31 36 43 41 51 32 44 49 48 51 23 00 34 35 50 63	24
multi-lingual XLM-RoBERTa-xl_context_special tokens_38		39 15 27 30 37 45 42 49 31 42 49 46 51 24 00 34 33 47 63	27
translated XLM-RoBERTa-large_context_special tokens_19	\checkmark	35 14 25 30 28 41 40 46 25 40 48 48 48 20 05 34 30 46 59	25
translated RoBERTa-large_weights_context_special tokens_19_only train data	\checkmark	37 19 23 31 32 40 41 45 31 43 48 51 48 26 11 34 33 48 60	27
translated RoBERTa-large_context_special tokens_19	\checkmark	37 16 28 33 35 43 38 48 28 44 48 51 49 27 05 34 27 48 61	27
translated DeBERTa-v2-xxl_context_special tokens_19_only train data	\checkmark	37 15 26 32 32 44 40 45 32 41 47 49 50 24 05 34 33 48 62	27
translated RoBERTa-large_context_special tokens_38	\checkmark	37 12 24 32 36 42 39 46 28 43 47 49 49 22 00 34 32 47 61	27
valueeval24-bert-baseline-en	\checkmark	24 00 13 24 16 32 27 35 08 24 40 46 42 00 00 18 22 37 55	02
valueeval24-random-baseline		06 02 07 05 02 11 08 10 04 05 13 03 11 03 00 04 04 09 04	02
valueeval24-random-baseline	\checkmark	06 02 07 05 02 11 08 10 03 04 14 03 11 03 00 05 04 09 04	02

RESULTS: SUB-TASK 2

111

Achieved F_1 -score of each submission on the test dataset for sub-task 2. A \checkmark indicates that the submission used the automatic translation to English. Baseline submissions shown in gray.

		~								F ₁ -	sc	ore	6								
Submission	EN	All	Self-direction: thought	Self-direction: action	Stimulation	Hedonism	Achievement	Power: dominance	Power: resources			Security: societal		: rules	Conformity: interpersonal			Benevolence: dependability	Universalism: concern	Universalism: nature	Universalism: tolerance
multi-lingual XLM-RoBERTa-xl_context_special tokens_38		77	73	73	77	75	78	77	79	71 7	87	79 7	77	78	74	25	74	77	78	84	71
translated RoBERTa-large_context_special tokens_38	\checkmark	77	72	72	78	74	78	78	78	73 7	8 7	78 7	8	77	73	22	78	77	78	82	74
valueeval24-bert-baseline-en	\checkmark	81	83	79	86	88	84	77	80	74 8	4 8	31 7	8	78	79	87	89	86	85	81	78
valueeval24-random-baseline		53	55	49	52	54	52	56	56 5	50 4	8 5	54 5	50 5	54	55	61	55	51	48	51	51
valueeval24-random-baseline	\checkmark	52	51	47	54	52	53	55	53 5	52 5	2 5	50 5	54 5	53	49	45	53	56	52 ·	49	56