Arthur Schopenhauer at Touché 2024: Multi-Lingual Text Classification Using Ensembles of Large Language Models

Hamza Yunis

CLEF 2024

## Task Goal

- Identify human values that a text references (Subtask 1) and whether these values are attained or constrained (Subtask 2).
- Examples:

| Text                                                                                                                                                             | Referenced Values                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Widely considered one of the<br>darkest days of the Troubles,<br>relatives of the victims have met<br>regularly to mourn their loss and<br>campaign for justice. | Universalism: concern<br>(attained)    |
| We were hoping that we would get<br>recourse to justice for our dead<br>family members and that hasn't<br>happened.                                              | Universalism: concern<br>(constrained) |

#### Task Formulation

- Multi-label classification problem.
- Labeled dataset: 59662 texts from 9 languages.
- 38 label columns corresponding to 19 values from the Schwartz taxonomy (each attained or constrained).
  - o Self-direction: thought attained
  - Self-direction: action attained
  - o Stimulation attained
  - Hedonism attained
  - o Achievement attained
  - Power: dominance attained
  - Power: resources attained
  - Face attained
  - Security: personal attained
  - Security: societal attained
  - Tradition attained
  - Conformity: rules attained
  - o Conformity: interpersonal attained
  - Humility attained
  - Benevolence: caring attained
  - o Benevolence: dependability attained
  - Universalism: concern attained
  - Universalism: nature attained
  - Universalism: tolerance attained

- o Self-direction: thought constrained
- o Self-direction: action constrained
- o Stimulation constrained
- o Hedonism constrained
- o Achievement constrained
- Power: dominance constrained
- Power: resources constrained
- Face constrained
- Security: personal constrained
- Security: societal constrained
- Tradition constrained
- Conformity: rules constrained
- Conformity: interpersonal constrained
- o Humility constrained
- Benevolence: caring constrained
- Benevolence: dependability constrained
- Universalism: concern constrained
- Universalism: nature constrained
- o Universalism: tolerance constrained

## Simplifying the Task

#### Preliminary Data Analysis

- ▶ 94% of texts have a single label or no label.
- Attainment / Constraint is largely independent from referenced values:

We were hoping that we would get recourse to justice for our dead family members and that hasn't happened.

#### Resultant Simplification

- Restricting the training / predicting process in Subtask 1 to one label (including 'no label').
- Training the models that predict attainment independently from models that predict human values.





- Duplicate texts.
- Texts with multiple labels.
- Texts with two words or less. Examples:

"76 Comments" "Extreme?" "It's Dr." "Moving out." "PM" "Source: PA." "Why?" "he said." "rise"



The 38 label columns are replaced by two columns:

hv\_value Numeric code for the human value referenced by the text (including 'no label').

- attainment Numeric code for attainment:
  - 0: constrained
  - 1: attained
  - 2: NA



- New validation set is created using 10% of the data.
- Proportional allocation is applied using language-label combinations.

## Fine-Tuning



#### Model Overview

| Model Name | Languages   | Architecture       | Seed | Loss Function          |  |  |
|------------|-------------|--------------------|------|------------------------|--|--|
| Subtask 1  |             |                    |      |                        |  |  |
| Model 1    | English     | deberta-v2-xxlarge | 66   | Cross-Entropy          |  |  |
| Model 2    | English     | deberta-v2-xxlarge | 66   | Weighted Cross-Entropy |  |  |
| Model 3    | English     | deberta-v2-xxlarge | 67   | Cross-Entropy          |  |  |
| Model 4    | English     | deberta-v2-xxlarge | 67   | Weighted Cross-Entropy |  |  |
| Model 5    | Non-English | ×lm-roberta        | 66   | Cross-Entropy          |  |  |
| Model 6    | Non-English | ×lm-roberta        | 66   | Weighted Cross-Entropy |  |  |
| Model 7    | Non-English | xlm-roberta        | 67   | Cross-Entropy          |  |  |
| Model 8    | Non-English | ×lm-roberta        | 67   | Weighted Cross-Entropy |  |  |
| Subtask 2  |             |                    |      |                        |  |  |
| Model 9    | English     | deberta-v2-xxlarge | 66   | Cross-Entropy          |  |  |
| Model 10   | Non-English | ×lm-roberta        | 66   | Cross-Entropy          |  |  |

### Pruned Soft Voting (Motivation)



## Pruned Soft Voting (Motivation)



- Observation: Model 4's prediction has a significantly higher probability than the rest, indicating it is better trained for this data instance than the other models.
- Therefore: It is reasonable to adopt Model 4's prediction as the final prediction and neglect the remaining predictions.

## Pruned Soft Voting

- General procedure: Given a threshold *T*, if there are predictions with probabilities exceeding *T*, then apply soft voting only to those predictions; otherwise, apply soft voting to all predictions.
- Finding the optimal threshold for Subtask 1 was done by applying grid search from 0.0 to 1.0 (step size: 0.01) using the validation set and F1-score macro as measure.
  - For English ensemble: 0.44; for non-English ensemble: 0.49.
- Pruned soft voting showed marginal improvement when applied to the validation set:

| Voting     | F1-Score Macro (after removing 'no label') |
|------------|--------------------------------------------|
| Non-Pruned | 0.3807                                     |
| Pruned     | 0.3902                                     |

#### Submission Results & Future Work

#### Subtask 1

| Team                | F1-Score (Macro) |
|---------------------|------------------|
| Arthur Schopenhauer | 0.35             |
| Baseline            | 0.24             |

#### Subtask 2

| Team                                  | F1-Score (Macro) |
|---------------------------------------|------------------|
| Arthur Schopenhauer (Best Submission) | 0.83             |
| Baseline                              | 0.81             |

#### Future Work

- Using larger model architectures.
- Fine-tuning different models to detect only certain values, rather than all 19 values.

# Thank you!